Special Protection Area Program Annual Report 2009

“The County Council finds that streams, rivers, wetlands, and other sensitive environmental features in Montgomery County constitute an important natural resource. Protection of fragile watershed areas will help restore and maintain the integrity of the Anacostia River, Potomac River, and Patuxent River within Montgomery County and the Chesapeake Bay.”

Article V, Water Quality Review in Special Protection Areas, Sec. 19-60, Findings and purpose.

Prepared by the Montgomery County Department of Environmental Protection in Cooperation With the Department of Permitting Services and the Maryland-National Capital Park and Planning Commission
Table of Contents

Executive Summary .. i
Introduction... i
Biological Monitoring... ii
BMP Monitoring.. iii
Recommendations and Conclusions ... iv

1. Introduction... 1-1
 1.1 Purpose.. 1-1
 1.2 Background .. 1-1
 1.2.1 SPA Program .. 1-1
 1.2.2 Monitoring in Special Protection Areas ... 1-3

2. SPA Water Quality Review Plan and BMP Monitoring Review Process 2-1
 2.1 Water Quality Plan Review Process .. 2-1
 2.1.1 Pre-application Meeting ... 2-1
 2.1.2 Preliminary and Final Water Quality Plan Submission .. 2-2
 2.1.3 Issuance of Permits and Bonds .. 2-3
 2.2 BMP Monitoring Review Process ... 2-3
 2.3 SPA BMP Technology .. 2-4
 2.3.1 Sediment and Erosion Control (During Construction) .. 2-4
 2.3.2 Stormwater Management (Post Construction) .. 2-4

3. BMP Effectiveness... 3-1
 3.1 2009 SPA BMP Monitoring Status ... 3-1
 3.1.1 Clarksburg SPA Project Status .. 3-2
 3.1.2 Upper Paint Branch SPA Project Status .. 3-4
 3.1.3 Piney Branch SPA Project Status .. 3-5
 3.1.4 Upper Rock Creek SPA Project Status ... 3-6
 3.2 Water Quality Monitoring ... 3-8
 3.2.1 Stream Temperature .. 3-9
 3.2.2 Embeddedness .. 3-9
 3.2.3 Groundwater Levels .. 3-9
 3.2.4 Groundwater Chemistry .. 3-11
 3.2.5 Instream Chemistry ... 3-11
 3.2.6 Continuous Stream Flow .. 3-11
 3.2.7 Cross Sections ... 3-11
 3.3 Sediment and Erosion Control (S&EC) BMP Monitoring ... 3-12
 3.3.1 Grab TSS Sampling ... 3-12
 3.3.2 Flow-weighted Composite TSS Sampling .. 3-15
 3.4 Stormwater Management (SWM) BMP Monitoring .. 3-28
 3.4.1 Background on Monitored Technologies .. 3-29
 3.4.2 2009 SWM BMP Monitoring Results ... 3-32
 3.5 Discussion of SPA BMP Effectiveness ... 3-36
 3.5.1 Completed Monitoring Projects in 2009 ... 3-36
 3.5.2 S&EC Monitoring During Construction ... 3-37
 3.5.3 SWM BMP Monitoring (Post Construction) ... 3-38
 3.5.4 Conclusions .. 3-38
List of Figures

Figure 1.1. Location of Special Protection Areas in Montgomery County. 1-2
Figure 1.2. Location of the Clarksburg Monitoring Partnership BACI Three Test Areas and Two Controls Areas. .. 1-4
Figure 3.1. SPA BMP Monitoring Project Completion Status in 2009. 3-1
Figure 3.2. 2009 Status of Clarksburg SPA Monitoring Projects. 3-3
Figure 3.3. 2009 Status of Upper Paint Branch SPA Monitoring Projects. 3-4
Figure 3.4. 2009 Status of Piney Branch SPA Monitoring Projects. 3-6
Figure 3.5. 2009 Status of Upper Rock Creek SPA Monitoring Projects. 3-7
Figure 3.6. Schema Representing SPA BMP Monitoring Locations. 3-8
Figure 3.7. Hunt Lion’s Den (Upper Paint Branch SPA) Groundwater Elevation Monitoring Results for Well#1. Well#1 is located in a wetland upstream of a tributary that flows into the Right Fork of Paint Branch. ... 3-10
Figure 3.8. Hunt Lion’s Den (Upper Paint Branch SPA) Groundwater Monitoring Results for Well#2. Well#2 is located less than 500 feet from two sand infiltration facilities. ... 3-10
Figure 3.9. Inlet and Outfall TSS Concentrations (Grab Sample Data) From Monitored Sediment and Erosion Control Structures. For Some Structures, Inlet TSS Concentrations Represent a Calculated Average Value for Multiple Inlets. 3-13
Figure 3.10. Percent Difference of Inlet and Outlet TSS Concentrations From Grab Samples Where Influent TSS Values are Greater Than or Equal to 100 mg/L. 3-14
Figure 3.11. Percent Difference of Inlet and Outlet TSS Concentrations from Grab Samples Where Influent TSS Values are Less Than 100 mg/L. 3-14
Figure 3.12. TSS Loadings Entering Versus Leaving for Three Sediment and Erosion Control Structures in Clarksburg (Automated Sampling Data) as reported in 2008 for 21 storm events ... 3-16
Figure 3.13. TSS Loadings Entering Versus Leaving for Four Sediment and Erosion Control Structures in Clarksburg (Automated Sampling Data) for 28 storm events. 3-17
Figure 3.14. Average, Maximum, Minimum, and Median TSS Removal Efficiencies for monitored S&EC basins through 2009 (Automated Sampling Data). 3-17
Figure 4.1. Percentage of Average Annual Precipitation Infiltrating into the Ground or Removed via Evapotranspiration. ... 4-3
Figure 4.2. Annual Flow (Adjusted for Drainage Area) from 2005 through 2009. 4-4
Figure 4.3. Comparison of Stream Response: July 23, 2009 1.55” storm. 4-5
Figure 4.4. Location of the Clarksburg Monitoring Partnership BACI three test areas and two control areas. Also included are biological monitoring stations and geomorphic survey locations. ... 4-6
Figure 4.5. Little Seneca 104 tributary (Newcut Road neighborhood) geomorphology survey test areas (A), Little Bennett Creek survey control areas (B), and Germantown negative control survey areas (C). ... 4-7
Figure 4.6. Representative cross sections from Newcut Road Neighborhood, Little Seneca 104 Tributary test location, Area 4. Cross sections are both measured in Riffle/run features. ... 4-9
Figure 4.7. Representative cross sections from Little Bennett Creek, Sopers Branch control location, Area 4. Cross sections both measured in Riffle/run features........ 4-10
Figure 5.1. Pre-development (1994-1998) Stream Conditions (average of fish and benthic % IBI scores) in the Clarksburg SPA. ... 5-3
Figure 5.2. Current (2006 - 2009) Stream Conditions (average of fish and benthic % IBI scores) in the Clarksburg SPA. ... 5-4
Figure 5.3. Pre-development (1994-1998) Stream Conditions (average of fish and benthic % IBI scores) in the Paint Branch SPA. .. 5-5
Figure 5.4. Current (2006 - 2008) Stream Conditions in the Paint Branch SPA.............. 5-6
Figure 5.5. Pre-development (1995-1997) Stream Conditions (average of fish and benthic % IBI scores) in the Piney Branch SPA. .. 5-7
Figure 5.6. Current (2006 - 2009) Stream Conditions in the Piney Branch SPA.............. 5-8
Figure 5.7. Potential (post-2007) Development impacts from Reserve at Fair Hill Project to Biological Monitoring Site URNB111 and URNB110D in Upper Rock Creek SPA. ... 5-9
Figure 5.8. Pre-development (2004-2007) Stream Conditions in the Upper Rock Creek SPA. ... 5-10
Figure 5.9. Current (2008-2009) Stream Conditions in the Upper Rock Creek SPA.... 5-11
Figure 5.10. Median Benthic IBI Scores for Clarksburg Control and Test Areas........ 5-12
Figure 5.11. Median Benthic Macroinvertebrate IBI Scores for Piney Branch Control and Test Areas. ... 5-13
Figure 5.12. Median Benthic IBI Scores for Upper Paint Branch Control and Test Areas. ... 5-14
Figure 5.13. Median Benthic IBI Scores for Upper Rock Creek Control Area............ 5-15
List of Tables

Table 3.1. Clarksburg Town Center Phase II-B Sediment Basin #3 Total Suspended Solids Loadings. Previously reported loadings are considered invalid due to calculation error. ...3-18
Table 3.2. Total Suspended Solids Loadings and Percent Differences Observed During Extended Sampling at Clarksburg Town Center Phase II-B Sediment Basin #3. Previously reported loadings are considered invalid due to calculation error.3-19
Table 3.3. Drainage area and land use compositions of the two stream chemistry monitoring stations established for the additional study independently-funded by the developer..3-20
Table 3.4. Characteristics of the Three Ponds Monitored at the Outfall for Total Suspended Solids Loadings as Part of an Additional Developer-funded Study in Clarksburg Town Center...3-20
Table 3.5. Progress of Construction in the Drainage Areas (DAs) to the Three Monitored Ponds. Pond Characteristics are described in Table 3.4. ...3-21
Table 3.6. Estimated Annual Average Loadings at Instream Stations Monitored for Additional Developer-funded Study in Clarksburg Town Center...3-21
Table 3.7. Results for TSS Sampling of Three Pond Outfalls in Clarksburg Town Center. ...3-22
Table 3.8. Rainfall and discharge characteristics for TSS Sampling of Three Pond Outfalls...3-22
Table 3.9. Stringtown Road Sediment Basin #3 Total Suspended Solids Loadings. Previously reported loadings are considered invalid due to calculation error.3-24
Table 3.10. Storm Characteristics for the Twelve Monitored Events at Gateway Commons S&EC Basin #2. Events denoted in bold were sampled for the 2009 Monitoring Year..3-25
Table 3.11. TSS Monitoring Results for Gateway Commons Sediment Basin #2. Events denoted in bold were sampled for the 2009 Monitoring Year and have not been previously reported. ...3-25
Table 3.12. 2009 SPA BMP Monitoring Program Sand Filter Characteristics.3-30
Table 3.13. Parameters, Detection Limits, and Holding Time Limit Requirements for Briarcliff Meadows. Discrepancies are highlighted and in bold............................3-34
Table 4.1. Descriptions of the Five Stream Gages in the Clarksburg Study Area........4-2
Table 4.2. Sinuosity indices and survey information for Newcut Road Little Seneca 104 tributary test area, Little Bennett Soper’s Branch control area, and Germantown Crystal Rock control area. Data are shown for furthest downstream areas within each test and control...4-11
Table 5.1. Control and Test Stations...5-15
Page left intentionally blank
Executive Summary

Introduction

The Special Protection Area (SPA) program was initiated in 1994 by County law. According to the Montgomery County Code, Section 19-61(h), a Special Protection Area is defined as:

“a geographic area where:
(1) existing water resources, or other environmental features directly relating to those water resources are of high quality or unusually sensitive; and
(2) proposed land uses would threaten the quality or preservation of those resources or features in the absence of special water quality protection measures which are closely coordinated with appropriate land use controls.”

SPA monitoring provides information to help evaluate: (1) the effectiveness of the SPA program in minimizing development-related impacts to sensitive streams; and, (2) the efficiency, performance, and effectiveness of best management practices (BMPs) in reducing pollutants. This Annual Report covers the 2009 monitoring year.

During 2009, stream conditions changed little in the SPAs from those reported for 2008. Out of 48 stations monitored, 46 stations (96%) had no change in stream conditions from 2008. In 2008 and 2009, there was a decreased amount of development reflecting the economic downturn which may have allowed less active construction sites to stabilize and for completed developments to convert to SWM. Many developments in Clarksburg have been completed and former sediment and erosion control devices have been fully converted to stormwater management BMPs. This rate of conversion was faster than in previous years.

Identifying development related impacts to SPA streams includes two types of monitoring. Cumulative impacts are assessed via biological monitoring1 while development related water chemistry and pollutants are quantified through BMP monitoring2.

1 The types and degree of cumulative impacts to local streams is determined through the monitoring of biological indicators, specifically the range and condition of benthic macroinvertebrates (bottom-dwelling aquatic insects, worms, crustaceans, and mollusks) and fish that are living in the stream. The compositions of these biological communities are ideal indicators of the health of a stream system, but do not necessarily reflect pollutant loads and cannot be typically used to identify specific water chemistry problems.

2 BMP monitoring in the SPAs includes flow-weighted sampling for the reduction of pollutant loads including sediment, nutrients, and heavy metals. BMPs are defined as techniques that are effective in eliminating or reducing the amount of pollution or other detrimental impacts to a watershed or wetland (Montgomery County Code 19-61(a)). Ongoing monitoring of sediment and erosion control (S&EC) BMPs continues to provide data during construction on total suspended solids (TSS) removal. Results from post-construction monitoring of stormwater management (SWM) BMPs are also presented in this report.
Preliminary results indicate that BMPs are performing well; in some cases they are performing better than expected. However, results from biological monitoring indicate varying degrees of degradation in the streams. Performance of the BMPs does not directly reflect the health of the organisms living in the receiving streams.

Biological Monitoring

Clarksburg SPA

In Clarksburg, stream conditions were in the *good to excellent* range from 1995 to 2002. Construction began in the Clarksburg SPA area in 2002; the same year in which a record drought also occurred. Stream conditions were significantly degraded between 2002 and 2007, with some slight improvement in 2008. In 2009, using the stream resource condition index, the streams in Clarksburg stayed much as they did in 2008 with the exception of the stream draining a portion of the Newcut Road development. This station improved from fair to good in 2009, based on combined scores for fish and macroinvertebrates.

However, much of the development in Clarksburg occurs within the drainage areas of small headwater streams. Benthic macroinvertebrates alone tend to provide a better indication of water quality and stream health in these small streams over fish.

The stream conditions in headwater areas undergoing development activities have been compared to a control set of headwater streams that have remained undeveloped. Stream conditions between the control and test stations were initially very similar, but diverged in 2003. In 2009, all of the test stations (under construction) in the Little Seneca Creek watershed remained in *fair* condition for benthic macroinvertebrates.

Stream conditions in the Ten Mile Creek subwatershed remain unchanged from 2008. An adult brown trout—indicators of good water quality—was again found in Ten Mile Creek. It is not known whether the trout are naturally occurring, but no signs of fish stocking, such as fin erosion, were observed. *Fair* stream conditions remained in the headwaters, where most development has occurred in recent years.

Upper Paint Branch SPA

Most of the SPA development within Paint Branch has occurred in the Right Fork of the Upper Paint Branch. Pre-development conditions (1994-1998) were predominantly *excellent*. The majority of current stream conditions (2006-2009) in the Right Fork have dropped slightly from *excellent* to *good*. It is anticipated that post-construction stream conditions in the Right Fork are likely to recover to near pre-construction level stream conditions since the composition of the biological community has not been greatly altered. One Upper Paint Branch station has remained in *fair* condition since the inception of monitoring. This station (PBGH108) is located in the headwaters of the Good Hope Tributary (in the vicinity of Peachwood Park).
In 2009, Brown trout, one of the most sensitive fish species to stream degradation and water quality impairment in Montgomery County, were still present in the Upper Paint Branch SPA. The Paint Branch SPA had a 10% impervious cap per-project from 1995-2006 which was then reduced to an eight percent impervious surfaces cap.

Piney Branch SPA

Much of the new SPA development in the upper Piney Branch has occurred since 1998. Stream conditions dropped from predominantly *fair* to *fair* and *poor* as development has increased. In 2009, the stream conditions below the Traville area are good. Stations that were in fair or poor condition in 2008 remain unchanged. These stations are located in the Upper Piney Branch and are in close proximity to one another. The downstream station is in a portion of the Piney Branch within the older Piney Glen Village and Willows of Potomac developments. These developments were not subject to SPA requirements since they were approved before the SPA designation occurred in 1998.

One station, WBPB102, remains *poor*. This station drains a major portion of Traville. The Traville development (approximately 140 acres) represents a consortium of projects. While construction on some properties has been completed with S&EC converted to SWM since 2000, other portions just began stabilization and conversion in 2007 and 2008. Stream conditions will be monitored as new SPA developments are completed and SWM controls are online and functioning as designed.

Upper Rock Creek SPA

Water quality in the small headwater streams monitored for the Upper Rock Creek SPA has remained consistently *good* since SPA monitoring began in 2004. These streams will receive drainage from the major developments planned for the Upper Rock Creek SPA. One of these developments, Phase 1 of the Reserve at Fair Hill, broke ground in 2007. URRC104, below and to the east of the intersection of Muncaster Road and Willow Oak Drive, has had no SPA development, and improved from a *fair* stream condition category in 2008 to just barely in the *good* category for 2009. The Upper Rock Creek SPA has an eight percent impervious surface cap for the residential zones in the watershed.

BMP Monitoring

Within the SPAs, BMP monitoring has demonstrated that the redundant features (i.e., the sequential use of structures in a treatment train) in S&EC and SWM designs are effective in reducing stormwater runoff and decreasing pollutant loadings, and appear to be more effective than the use of individual structures. Results also show that placement of individual structures within the treatment train is an important consideration. Since the inception of the SPA program, the Department of Permitting Services has consistently refined BMP design plans and reduced the size of the area draining to individual structures in an effort to improve pollutant removal efficiency and mitigate development impacts.
Twenty-four projects had continuing monitoring in 2009, seven were pre-construction. Nine of these projects were technically classified as in the “during construction” monitoring phase in 2009. However, only three projects have active sediment basins that are being monitored for total suspended solids. One project under construction does not have a sediment basin sampling requirement. The remaining five projects considered in the “during construction” monitoring phase have been stabilized and converted to stormwater management. These five projects are awaiting as-built approval and certification, and issuance of a post construction monitoring bond, to move into the post-construction monitoring phase. Eight projects are in the post construction monitoring phase: Clarksburg Ridge, Parkside, Running Brook, Summerfield Crossing, Briarcliff Meadows, Forest Ridge, Hunt Lion’s Den, and Traville. Four of these projects are collecting data on SWM BMP technology. Of the remaining four, Forest Ridge and Hunt Lion’s Den did not have SWM BMP sampling requirements, and Running Brook and Traville did not have samplers deployed for data collection due to problems with consultant performance.

Much of the Clarksburg SPA still remains in the “during construction” monitoring phase but many properties have largely been stabilized, with S&EC basins converted to SWM facilities. In the Upper Paint Branch SPA, the majority of projects have completed monitoring. Monitoring requirements at the Hunt Lion’s Den development were fulfilled in 2009 and results summarized in Section 3.1. A post construction monitoring bond was posted for Briarcliff Meadows and data collection on post construction groundwater levels and chemistry, pollutant removal efficiency for a sand filter and a biofilter began in 2009. In the Piney Branch SPA, the only monitoring project still active is Traville and post construction monitoring has not yet started for this project due to lack of performance by the consultant contracted to do the work.

The Upper Rock Creek SPA has two projects currently conducting monitoring. The Reserve at Fair Hill began monitoring during construction conditions in May 2007. Hydrologic characteristics (groundwater elevation and chemistry, peak stream flow, and stream geomorphology) are being monitored. No sediment basin total suspended solids (TSS) removal efficiency monitoring was required. The Preserve at Rock Creek has completed pre-construction monitoring and data collection will continue once construction begins. More data are anticipated over the next few years from portions of SPAs where the majority of the subwatershed monitoring area is undergoing SPA development.

Recommendations and Conclusions

During 2011, the DEP will move forward to propose changes in Chapter 19 Article IV to provide DEP with direct management of BMP monitoring. This would provide more consistency and reduce some of the problems encountered to date with monitoring in the SPAs. These code changes will be implemented as soon as possible. At the same time, the Maryland Department of the Environment will be completing review and revision of
the State's S&EC regulations. Changes under consideration include requirements for faster conversion from S&EC to SWM, stricter phasing stages of construction to allow greater focus on soil stabilization, limiting the acreage allowed of exposed soils, stricter utility S&EC, and limiting of cut and fill activities to retain natural drainage patterns. The DPS is representing Montgomery County on the statewide workgroup. Montgomery County has traditionally been the leader in progressive S&EC regulations and expects to exceed requirements of the new MDE regulations.

The Maryland Department of the Environment (MDE) has new regulations to implement the Stormwater Management Act of 2007. These regulations require the use of Environmental Site Design (ESD) practices to the maximum extent practicable to control runoff and pollution from both new development and redevelopment. ESD requires integrating site design, natural hydrology, and smaller controls to capture and treat runoff, to better maintain natural drainage pathways and minimize development impacts to receiving streams. The first SPA property to be developed with the new ESD regulations is the Anselmo property in the Upper Paint Branch SPA.

The County would like to partner with developers, consultants, and the environmental community on the future of the SPA program to redefine goals and objectives and the best way to accomplish those goals. The DEP is the lead agency on this effort and will be setting up a series of meeting in FY11 to discuss the future of the SPA program.

Issues related to maintenance of BMPs also need greater consideration. DEP is reviewing and evaluating the frequency needed to maintain BMPs properly. Special consideration will need to be given to some of the non structural Environmental Site Design (ESD) techniques required by the new Maryland stormwater act.
1. Introduction

1.1 Purpose

The Special Protection Area Report summarizes the monitoring conducted in streams and on Best Management Practices (BMPs) within Special Protection Areas (SPAs). SPA reports are submitted to the County Executive and County Council with a copy to the Planning Board. The report will also be made available to the general public upon request. Reports follow standard scientific format and contain trend analysis including descriptive statistics and graphical interpretation of biological indices and habitat assessments. The biological condition of each station will be compared to the appropriate reference condition.

This 2009 Special Protection Area Annual Report meets the requirements of Montgomery County Code Chapter 19, Article V (Water Quality Review: Special Protection Areas), Section 19-67. The Special Protection Area (SPA) program is implemented through Executive Regulation 29-95: Water Quality Review for Development in Designated Special Protection Areas.

1.2 Background

1.2.1 SPA Program

The Special Protection Area (SPA) program was initiated in 1994 by County law. According to the Montgomery County Code, Section 19-61(h), a Special Protection Area is defined as:

“a geographic area where:
(1) existing water resources, or other environmental features directly relating to those water resources are of high quality or unusually sensitive; and
(2) proposed land uses would threaten the quality or preservation of those resources or features in the absence of special water quality protection measures which are closely coordinated with appropriate land use controls.”

Four areas within Montgomery County are designated as Special Protection Areas (Figure 1.1). In 1994, The Clarksburg Master Plan approved the creation of the first SPA with the establishment of the Clarksburg SPA. In 1995, Piney Branch and Upper Paint Branch were designated as SPAs by separate Council Resolutions. The Piney Branch SPA lies within the Potomac Master Plan and Great Seneca Science Corridor Master Plan (formerly Gaithersburg West Master Plan). The Upper Paint Branch SPA is covered by the Master Plans of Cloverly, Fairland, and White Oak. The Upper Rock Creek was designated as an SPA on February 24, 2004, with the adoption of the Upper Rock Creek Master Plan and on March 15, 2005 with the adoption of the Olney Master Plan. All four SPAs have existing water resources or other environmental features that are of high quality or unusually sensitive.
The Piney Branch SPA and the Clarksburg SPA were created with very limited or no imperviousness cap for new development (in the Clarksburg Master Plan, there is a 15% impervious limit recommended for industrial sites on the west side of I-270). As the importance of minimizing imperviousness levels to maintain healthy stream conditions became better understood, the establishment of the Upper Paint Branch SPA was accompanied by an **Environmental Overlay Zone**, adopted in July 1997. The 1997 environmental overlay zone included a 10% impervious cap on new development, as well as restrictions on specific land uses that typically have significant adverse environmental impacts on sensitive natural resources. This Overlay Zone was amended in 2007 to revise the imperviousness limit for new development downwards to 8%. The Upper Rock Creek SPA designation was accompanied by an Environmental Overlay Zone on October 26, 2004, which designates an 8% imperviousness limit on new private residential subdivisions that are served by community sewer.

![Figure 1.1. Location of Special Protection Areas in Montgomery County.](image)

The SPA program requires the Montgomery County Department of Permitting Services (DPS), the Department of Environmental Protection (DEP), and the Maryland-National Capital Park and Planning Commission (M-NCPPC) to work closely with project developers from the onset of the regulatory review process to avoid or minimize adverse
impacts to SPA stream conditions. SPA permitting requirements guide the development of concept plans for site imperviousness, site layout, environmental buffers, forest conservation, *Sediment and Erosion Control (S&EC)*, and *Stormwater Management (SWM)*.

1.2.2 Monitoring in Special Protection Areas

Monitoring of Sediment and Erosion Control (S&EC) and Stormwater Management (SWM) BMP structures is required as part of the SPA program. The SPA BMP monitoring program requires developers to evaluate the ability of BMPs to minimize development impacts to the receiving streams. S&EC BMPs are installed on the construction site before initial land disturbing activities begin. They are designed to capture sediment-laden runoff generated during construction. After construction is complete and the site is stabilized, S&EC BMPs are converted or SWM BMPs are installed to attenuate storm flows (quantity control) and capture pollutants (quality control).

In conjunction with the monitoring performed by the developer, DEP performs physical stream characteristic (Section 4) and biological stream monitoring (Section 5) to study the cumulative effects of development in the watershed.

The Clarksburg Monitoring Partnership (CMP) conducts additional monitoring within the Clarksburg Master Plan area. The CMP is a consortium of local and federal agencies and universities. The CMP offers a collaborative approach to monitoring the long term aquatic ecosystem changes resulting from the associated landscape transition from agricultural to medium and high density residential, commercial, and industrial land use. Results from the CMP are used to help support stormwater design manual monitoring requirements under the County’s Municipal Separate Storm Sewer System (MS4) permit.

The CMP is using a *Before, After, Control, Impact (BACI) design* approach (Fig. 1.2) to assess the land use changes and the impacts to stream conditions. Three test areas were selected: two in the Newcut Road Neighborhood and one in the Cabin Branch Neighborhood (Fig. 1.2). An undeveloped control area was established in Little Bennett Regional Park and a final developed control area was set up in Germantown (Fig. 1.2). All the test and control areas have United States Geological Survey (USGS) flow gages installed and are collecting continuous stream flow data over time. Two rain gages monitor area rainfall and document local rainfall intensities to correlate rainfall to stream flow. Light Detection and Ranging (LiDAR) imagery will assist in the mapping of landscape changes as a result of the terrain alterations in Clarksburg.
Figure 1.2. Location of the Clarksburg Monitoring Partnership BACI Three Test Areas and Two Controls Areas.
2. SPA Water Quality Review Plan and BMP Monitoring Review Process

Any development activity on privately or publicly owned land (unless specifically exempted) must go through the water quality review process. This section summarizes the plan review process used to approve the design and layout of BMPs in an SPA. The section will also provide a summary on development of monitoring plans and requirements. Additional details can be found in the Technical Appendix 3.

2.1 Water Quality Plan Review Process

2.1.1 Pre-application Meeting

Prior to submission of the water quality inventory and formal water quality plans for review and approval, an applicant for development must submit a written request and attend a pre-application meeting with DPS, DEP, and M-NCPPC. The meeting provides for advance discussion of:

- Proposed performance goals that are to apply to the development of the site;
- The conceptual approach and possible locations of preferred structural and non-structural BMPs and their estimated suitability for achieving the performance goals;
- Approaches to minimize impervious surfaces or in some cases limit these surfaces to a regulatory cap, maximize protection of environmentally-sensitive areas such as streams, wetlands, and their buffers, and meet or exceed Forest Conservation Law requirements; and
- Develop innovative site layouts and linked best management practice options to maximize protection of water quality, stream habitat, and aquatic life.

Performance Goals

Before the pre-application meeting, DPS reviews the plans and establishes site-specific performance goals. DEP then works with DPS to determine how achievement of these goals can be documented through monitoring. Some performance goals are met by the site design and cannot be directly measured. DEP also advises the applicant of any available results and analysis of stream monitoring in the subwatershed of interest. M-NCPPC evaluates the plans and aids the applicant in ensuring the development project meets the Planning Board’s Environmental Guidelines, minimizes or meets regulatory limits on impervious surfaces, and meets Forest Conservation Law requirements. DPS provides recommendations on S&EC and SWM measures that are appropriate for the proposed development. Following this discussion, the applicant circulates minutes recorded during the meeting for the group’s evaluation and approval.
Performance goals aim to:

1. Protect stream/aquatic life habitat.
3. Protect seeps, springs, and wetlands.
4. Maintain natural on-site stream channels.
5. Minimize storm flow runoff increases.
6. Identify and protect stream banks prone to erosion and slumping.
7. Minimize increases to ambient water temperature.
8. Minimize sediment loading.
10. Control insecticides, pesticides, and toxic substances.

2.1.2 Preliminary and Final Water Quality Plan Submission

Following approval of the pre-application meeting minutes, preliminary and final water quality plans are developed and submitted to the respective lead agencies for their review and approval. Elements of these plans include preservation of [environmentally sensitive areas](#) and priority forest conservation areas, SWM concept plans, S&EC concept plans, documentation of impervious areas, BMP monitoring plans, and description of other mitigation practices including minimization of road widths and use of open section roads. Public notice of the submission of the preliminary water quality plan is made by DPS so that a public information meeting can be held if requested. The Planning Board gives approval to specific components of a water quality plan after DPS approves the plan components required under their review. Some plans can be submitted as a combined preliminary/final water quality plan.

With the exception of the Upper Paint Branch SPA and the Upper Rock Creek residential developments served by public sewer, only a water quality inventory instead of a full water quality plan is necessary if:

1) A project on agricultural, residential, or mixed use zoned property contains a proposed impervious area of less than 8% or a cumulative area of 10 or fewer acres and a proposed impervious area of less than 15% of the total land area.

2) A project on property zoned for industrial or commercial use consisting of a cumulative land area of two or fewer acres covered by the development approval application.

A water quality inventory consists of most of the information that is typically required in a water quality plan and includes a stormwater management concept plan, a sediment control concept plan, and documentation of impervious areas. A water quality inventory does not require a monitoring plan with anticipated performance goals and does not require a public noticing
period. The SPA law and regulations also do not require Planning Board review and approval of the inventory.

Once DPS approves its components of a water quality plan, DPS issues a letter detailing its conditions of approval, including the BMP monitoring requirements. The Planning Board must also review and approve specific components of the water quality plan in order for a land development project to move forward. Applicants required to conduct monitoring must collect at least one year of data documenting baseline conditions prior to construction. DEP and DPS must approve the data and report submission documenting baseline conditions prior to any construction activities taking place on the site.

2.1.3 Issuance of Permits and Bonds

DPS is responsible for the issuance of permits and the enforcement of bonds. DEP works closely with DPS to ensure that monitoring is being completed as specified and that the construction site is in compliance. DPS sediment inspectors may issue a Notice of Violation if the site fails to remain in compliance. The S&EC permit is closed and released following final inspection and approval of SWM as-built plans.

As of 2008, DPS has been issuing a separate BMP monitoring permit after the S&EC permit has been closed at sites required to do post construction monitoring. The bond amount for this permit is established by DEP based on the anticipated cost of monitoring. Previously, the original S&EC permit and bond was left in place until the post construction monitoring was completed. A separate post construction monitoring permit allows for the S&EC to be closed, the bond amount to be reduced, and adds an extra level of enforcement and assurance that the monitoring is being completed as required. If the owner of the property (or the owner’s consultant) does not complete the monitoring and reporting according to the approved final water quality plan and county regulations, the bond can be used by the county to complete the required monitoring tasks. The bond is released pending completion of post construction monitoring and approval of final data and report submissions by DEP and DPS. DPS continues to coordinate with DEP on the transfer of completed SWM facilities to DEP for structural maintenance and review and inspection of maintenance activities.

2.2 BMP Monitoring Review Process

The goal of the BMP monitoring program is to assess the effectiveness of SPA S&EC structures and SWM structures in maintaining water quality. A monitoring plan is designed to evaluate the effectiveness of BMPs, innovative site design and achievement of site performance goals. SPA BMP monitoring often includes monitoring of: groundwater elevations, groundwater chemistry, instream temperature, instream (surface water) chemistry, stream base flow and storm flow, stream geomorphology, total suspended solids (TSS), and pollutant loading reductions. Monitoring follows the procedures outlined in the Montgomery County Department of Environmental Protection Best Management Practice Monitoring Protocols (MCDEP 1998).

The information collected, when combined with data from the County’s biological stream monitoring program, is used to evaluate the effectiveness of the County’s current BMP designs.
over a range of drainage areas, land use, and impervious levels in protecting water quality. Recognizing practical site conditions, feasibility, and cost considerations, BMP monitoring is not required for all SPA development projects. There are many projects where, because of the relatively small property sizes or other reasons, no BMP monitoring is required.

2.3 SPA BMP Technology

The requirements for design of S&EC and SWM structures in SPAs currently exceed the minimum requirements set forth by the Maryland Department of the Environment (MDE). Redundancy and over-sizing of structures are the primary measures used to improve performance.

2.3.1 Sediment and Erosion Control (During Construction)

Montgomery County has adopted a number of features for S&EC including:

- basins with forebays,
- filter fence baffles,
- floating skimmers,
- dual basins in series,
- greater storage volumes, and
- utilizing combinations in the form of a treatment train to improve performance.

The S&EC Plans in SPAs emphasize redundant treatment. The current standard design requirement for S&EC in SPAs is to provide oversized basins with forebays, extend the travel path of the runoff as it goes through the pond, and promote the use of super silt fencing.

2.3.2 Stormwater Management (Post Construction)

The Maryland Department of the Environment (MDE) 2000 Maryland Stormwater Design Manual provides unified stormwater sizing criteria that specify how stormwater structures are designed. The three minimum components necessary to meet state stormwater management requirements are:

- water quality volume (WQv)
- channel protection storage volume (Cpv)
- recharge volume (Rev)

The water quality volume is approximately the first inch of rain over the impervious area and treats the “first flush” of contaminants coming off of impervious surfaces. In SPAs, redundant controls, also known as treatment trains, are required for stormwater quality control. Treatment trains utilize different types of non-structural and structural BMPs in series.

The allowable drainage area to any one filtering structure has decreased drastically since the SPA program started. Originally, there were only guidelines and no set limits for drainage areas to a filtering structure. The drainage area limit has decreased over the years to its current limit of
three acres to a surface sand filter and one acre for all other water quality structures (including biofilters, infiltration trenches, and proprietary structures). This was done to increase the efficiency of the structures and to limit the area that is not treated (or is minimally treated) as the filtering structures become clogged and require maintenance. Additionally, runoff from areas intended for vehicular use must be pretreated prior to entering the water quality structure. This is typically done using a vegetated filter strip or a hydrodynamic structure.

The channel protection storage volume (also called the water quantity volume) is the volume necessary to hold the one-year 24 hour storm, approximately 2.6 inches of rainfall. Storage and slow release of the channel protection volume is intended to protect streams from erosion due to high velocity water scouring the banks. In the SPAs, the requirement for control of the one-year storm event was in place prior to the adoption of the 2000 MDE manual.

The recharge volume is intended to maintain the groundwater table and natural hydrology. Groundwater recharge has also been a requirement for developments in the SPAs from the beginning of the program. The adoption of the 2000 MDE Stormwater Design Manual provided additional methods to consider for providing groundwater recharge as well as the minimum recharge volume that must be provided.

The Maryland Department of the Environment (MDE) has new regulations to implement the Stormwater Management Act of 2007. These regulations require the use of Environmental Site Design (ESD) practices wherever possible to control runoff and pollution from both new development and redevelopment. ESD requires integrating site design, natural hydrology, and smaller controls to capture and treat runoff, to better maintain natural drainage pathways and minimize development impacts to receiving streams.
3.0 BMP Effectiveness

SPA BMP monitoring projects are evaluated based on BMP efficiency, performance, and effectiveness. Developers are responsible for funding the monitoring within their property’s limits to document achievement of the SPA performance goals set at the beginning of the SPA development process as part of the Water Quality Review Process detailed in Section 2.1. They do this by paying a monitoring fee in order for DEP to evaluate stream characteristics (Section 4.0) and conduct biological monitoring (Section 5.0); and by hiring consultants to conduct BMP monitoring (Section 3.0).

BMP efficiency	compares the amount of pollution entering the BMP to the amount of pollution leaving the BMP. Either pollutant concentrations from grab samples or loading values from flow-weighted samples collected by automated samples are used for this measure.
BMP performance	evaluates how well the BMP is removing pollutants compared to literature values.
BMP effectiveness	is the ability of the BMP and site design to meet one or more of the SPA program performance goals.

3.1 2009 SPA BMP Monitoring Status

Status of the BMP monitoring projects being conducted in 2009 as part of the SPA program is shown in Figure 3.1. A list of parameters monitored per project is located in the Technical Appendix.

![SPA BMP Monitoring Projects in 2009](image)

Figure 3.1. SPA BMP Monitoring Project Completion Status in 2009.
Twenty-two projects have completed monitoring, one of which satisfied monitoring requirements in 2009. Hunt Lion’s Den, a 78.65 acre property in the Upper Paint Branch SPA, involved conversion of pasture into a cluster method development of 69 single-family homes and related infrastructure. A small tributary runs through the property and into the Right Fork of Paint Branch (PBRF). Biological monitoring stations PBRF117 and PBRF204 receive drainage from the development. No structural BMP monitoring was required at Hunt Lion’s Den, and data were collected on stream and groundwater characteristics beginning in 2000 and concluding in 2009. Monitoring results are discussed in Sections 3.2.1, 3.1.2, 3.1.3 and 3.2.7. A list of all completed projects and monitored parameters with years monitored through 2009 are located in the Technical Appendix. Any updates to monitoring requirements are also in the Technical Appendix.

Of the 23 projects continuing monitoring in 2009, seven were pre-construction. Five projects identified as pre-construction have collected baseline data but are on hold and awaiting groundbreaking. Two projects entered the pre-construction monitoring phase in 2009 in the Upper Paint Branch SPA – Fairland Elementary School and Paint Branch High School. The Paint Branch High School property falls on the drainage divide of the Upper Paint Branch SPA. Construction is limited on the 2.75 acres of the property draining to the Upper Paint Branch SPA; the majority of the construction (43.1 acres), including the new building and parking lots, drains to the Little Paint Branch (non-SPA)

Nine of these projects were technically classified as in the “during construction” monitoring phase in 2009. However, only three projects have active sediment basins that are being monitored for total suspended solids. One project under construction does not have a sediment basin sampling requirement. The remaining five projects considered in the during construction monitoring phase have been stabilized and converted to stormwater management. These five projects are awaiting as-built approval and certification, and issuance of a post-construction monitoring bond, to move into the post-construction monitoring phase.

Eight projects are in the post construction monitoring phase: Four in the Clarksburg SPA (Clarksburg Ridge, Parkside, Running Brook, and Summerfield Crossing), three in the Upper Paint Branch SPA (Briarcliff Meadows, Forest Ridge, Hunt Lion’s Den), and one in the Piney Branch SPA (Traville). Four of these projects are collecting data on SWM BMP technology. Of the remaining four, Forest Ridge and Hunt Lion’s Den did not have SWM BMP sampling requirements, and Running Brook and Traville did not have samplers deployed for data collection due to problems with implementation.

3.1.1 Clarksburg SPA Project Status

Much of the Clarksburg Special Protection Area still remains in the during construction monitoring phase but many properties have largely been stabilized, with some S&EC basins converted to SWM facilities (Fig. 3.2).

Six projects have not started construction, but one, the Cabin Branch Neighborhood, is anticipated to begin construction in 2011. Baseline data collection on groundwater
characteristics at the Goddard School is expected to begin in late 2010. Four projects in Clarksburg SPA were collecting data on post construction conditions in 2009.

A temperature study began at the sand filter in Parkside in 2009. SWM BMP pollutant removal efficiency sampling began in 2008 at a Clarksburg Ridge treatment train (surface sand filter with BaySaver BaySeparator™ pre-treatment). Problems collecting water samples in the inlet due to clogging of the structure, turbulence or uncertainty if the runoff went through the bypass outlet or into the BaySeparator made successful sampling collection extremely difficult despite the consultant’s best efforts. A Stormfilter® and a surface sand filter-dry pond treatment train were monitored in the Summerfield Crossing development in 2009. Running Brook has had monitoring problems and no usable data were produced. The sediment permit and bond were used for enforcement. The sediment permit was closed prematurely, before monitoring requirements were satisfied.

Figure 3.2. 2009 Status of Clarksburg SPA Monitoring Projects.
3.1.2 Upper Paint Branch SPA Project Status

The majority of projects in the Upper Paint Branch have completed monitoring (Fig. 3.3). Monitoring requirements at the Hunt Lion’s Den development were fulfilled in 2009. Monitoring results for this completed project are summarized in Section 3.1.

A post construction monitoring bond was posted for Briarcliff Meadows and data collection on post construction groundwater levels and chemistry, pollutant removal efficiency for a sand filter and a biofilter began in 2009.

A pre-application meeting was held for one of the last large developable parcels in Paint Branch, the Anselmo property, during this reporting period. All other recent development applications have been for small construction activities. Two public school improvement and expansion projects, Fairland Elementary School and Paint Branch High School, are
anticipated to begin construction in 2010. Data on the existing SWM BMP system in the
parking lot at Fairland Elementary School were collected, but sampling errors and a
change in post construction SWM configuration caused the monitoring requirements to
be dropped. Paint Branch High School is collecting data on during construction and post
construction structural BMPs for the portion of the site lying in the SPA (2.75 acres).

A stream restoration project at the Maydale Nature Center is planned for late summer
The project involves removal of fish blockages and other stream habitat improvement
measures, bank stabilization, and wetland protection.

A number of Intercounty Connector (ICC) stewardship and mitigation projects are also
being designed by the State Highway Administration (SHA) for the Upper Paint Branch
SPA. MC DEP, DPS, and MNCPPC are working with SHA for the ICC and associated
projects to achieve SPA requirements. Long-term water quality monitoring data are being
collected by SHA and consultants to evaluate the effect of the ICC on the surrounding
streams. Data analysis is pending until after the highway has been opened and the SWM
structures are online for a minimum of one year.

3.1.3 Piney Branch SPA Project Status

The Piney Branch SPA is near the maximum build out allowed under the Master Plan.
Analysis conducted in 2005 by the MNCPPC found that 5%, or 121 acres, of the 2,369
total acres in the Piney Branch SPA remain available for development (MNCPPC 2005).
Two large developments (~433 acres), Willows of Potomac and Piney Glen Village (Fig
3.4), were constructed in the upper Piney Branch below Traville just prior to the
establishment of the Piney Branch SPA and lack the special land use controls and water
quality protection imposed under SPA requirements. Other pre-SPA developments
include Piney Glen Farms, Glen Hills, Lakewood Glen, Lakewood Estates, and Glen
Meadows, most of which were constructed during the 1970s and 1980s.

Pollutant removal efficiency monitoring of the SWM BMP treatment train at Willow
Oaks was completed in 2008; results were presented in the 2008 SPA Annual Report.
The only monitoring project still active in the Piney Branch SPA is Traville (Fig. 3.4).
Post construction monitoring has not started for this project. A post construction
monitoring permit for the project was issued on April 09, 2009. The post construction
monitoring bond may need to be used to complete the monitoring requirements.
3.1.4 Upper Rock Creek SPA Project Status

The Upper Rock Creek SPA has two projects currently conducting monitoring (Fig. 3.5). The Reserve at Fair Hill began monitoring during construction conditions in May 2007. Hydrologic characteristics (groundwater elevation and chemistry, peak stream flow, and stream geomorphology) are being monitored. No sediment basin total suspended solids (TSS) removal efficiency monitoring was required. The Preserve at Rock Creek has completed pre-construction monitoring and data collection will continue once construction begins.

Similar to the Piney Branch and Upper Paint Branch SPAs, the Upper Rock Creek SPA had extensive development prior to SPA designation. The majority of new development projects are subdivisions of existing lots or redevelopment projects. For example, a redevelopment of Norbeck Country Club involved land disturbance activities that were
limited to construction of a pool house and tennis building (about six acres of disturbance). No monitoring requirements were set and a partial stream monitoring fee waiver was granted.

Two large parcels, the Hendry and Fraley properties (Fig. 3.5) remain available for development activities, but no development applications have been received. The Rickman Property is a re-development of commercial site from a landscaping company to a storage facility. Monitoring of the vegetated roof to be installed on sections of the warehouses is anticipated.

Figure 3.5. 2009 Status of Upper Rock Creek SPA Monitoring Projects.

A plan for the Laytonia Recreational Park was approved in 2001 (prior to the creation of the SPA) with a total imperviousness of over 18% for the 49 acre parcel. Revised plans were submitted in 2009 to set aside seven acres for construction of a new Montgomery County Animal Shelter and reduce the original planned impervious levels. It is
anticipated that the final site layout will still exceed the 8% impervious limit by around 2% in order to meet master plan and facility needs.

Development activities at the Laytonia Recreation portion include construction of several athletic fields (including one constructed from artificial turf) and extensive paved areas for access and parking. Baseline data collection on groundwater elevations and chemistry for the recreation park portion of the parcel is expected to commence in late 2010. The Montgomery County Animal Shelter portion falls on the other side of the drainage divide from the park and drains primarily away from the SPA into Mill Creek. No pre-construction monitoring requirements were set for the Animal Shelter, but both portions of the parcel will have monitoring requirements for S&EC and SWM BMPs which will be determined during the final water quality plan submittal phase.

Long-term water quality monitoring data are also being collected in Upper Rock Creek for the ICC. Data analysis is pending until after the highway has been opened and the SWM structures are online for a minimum of one year.

3.2 Water Quality Monitoring

BMP monitoring prior to 2001 evaluated BMP effectiveness by monitoring stream and hydrological conditions as well as water quality parameters where the stormwater for the site discharges into the receiving stream (Fig. 3.6). Later monitoring paired data collection on the stream’s physical characteristics with an additional focus on specific structural BMP performance. Current BMP monitoring evaluates pollutant removal efficiency by measuring the amount of pollutant entering a BMP versus the amount of pollutant exiting a BMP (Fig. 3.6). Monitoring results of stream and hydrological conditions are presented when projects have fulfilled all requirements and the dataset is complete. This section presents the results of completed projects through 2009.

![Figure 3.6. Schema Representing SPA BMP Monitoring Locations.](image-url)
3.2.1 Stream Temperature

Monitoring of stream temperature at two stations in Hunt Lion’s Den was completed in 2009. Temperature was monitored continuously from 2000 to 2009 in the Right Fork of Paint Branch. Temperature meters were placed upstream and downstream of a SWM BMP outfall for a paired study design to evaluate if the BMP was mitigating instream impacts. Property and monitoring station location maps are provided in the Technical Appendix. Results for temperature monitoring were inconclusive for Hunt Lion’s Den. Data from the downstream logger were lost during the pre-construction period; confounding data interpretation. A data summary table is also available in the Technical Appendix.

3.2.2 Embeddedness

Embeddedness monitoring measures the extent to which sediment has covered the stream bottom and filled in spaces between rocks, cobble, and gravel. Data collected at Hunt Lion’s Den from 2000 through 2008 (presented in the Technical Appendix) indicate that the development did not have an impact on embeddedness. Two locations in the Right Fork of Paint Branch upstream and downstream of a SWM BMP outfall were monitored.

No substantial differences in embeddedness were determined between the upstream and downstream stations, and values following development activities were similar to baseline conditions. Mean embeddedness was highest at both stations during baseline and construction. The highest mean embeddedness value (82%) was at the upstream station during the first year of construction (2002). Subsequent values during construction and post construction ranged from 50-70%. The mass grading and conversion of pasture and agricultural practices to urban land use may account for this initial increase. No discernable increase or trend was observed in the station downstream of the sediment basin, suggesting that Sediment Basin 5 was effective at minimizing sediment loadings and maintaining instream habitat and that the related performance goals were achieved for Hunt Lion’s Den.

Fouling, a related parameter was also measured concurrently with embeddedness. Fouling is the amount of biological/organic matter covering the area throughout the riffle and resulting in loss of habitat and loss of aquatic life. Average fouling was also higher during baseline and construction year 1 (2002) than subsequent years, again suggesting that the performance goal of maintaining instream habitat was achieved.

Six other projects completed prior to 2009 completed embeddedness monitoring. Four of these projects experienced no impacts while two others had embeddedness levels that were highest during construction and then declined post construction (MCDEP 2009).

3.2.3 Groundwater Levels

Two groundwater wells were monitored at Hunt Lion’s Den. One shallow (6 feet in depth) well, GW#1, was located in a forested wetland located near the northern property.
The second well (20 feet deep) was located near the SWM BMP, near two infiltration areas, and adjacent to the riparian buffer.

No impacts to groundwater elevations were associated with the Hunt Lion’s Den development. Mean, maximum, and minimum groundwater elevations remain consistent over time from baseline to the conclusion of monitoring in 2008 (see Technical Appendix). However, there appears to be a slight declining trend in groundwater elevations beginning in 2006 at Well#1 (associated with the wetland) during the post construction period (Fig. 3.7). This trend was not apparent in Well#2 (Fig. 3.8). Furthermore, Well#2 is situated near two infiltration areas. Infiltration areas are designed to promote groundwater recharge. Groundwater levels neither decreased nor increased in Well#2 across the phases of monitoring.

Figure 3.7. Hunt Lion’s Den (Upper Paint Branch SPA) Groundwater Elevation Monitoring Results for Well#1. Well#1 is located in a wetland upstream of a tributary that flows into the Right Fork of Paint Branch.

Figure 3.8. Hunt Lion’s Den (Upper Paint Branch SPA) Groundwater Monitoring Results for Well#2. Well#2 is located less than 500 feet from two sand infiltration facilities.
3.2.4 Groundwater Chemistry

No additional monitoring results were produced during the 2009 monitoring year. As indicated in the SPA annual report for 2008, data collected from the two projects completed prior to 2009 produced inconclusive results.

3.2.5 Instream Chemistry

No projects completed in 2009 were required to monitor instream chemistry.

3.2.6 Continuous Stream Flow

Current SPA surface gages are operated by Montgomery County, U.S. EPA, and the USGS through several joint funding agreements to improve data collection and availability. Locations of gages and data analyses are presented in Section 4.

Continuous stream flow monitoring is required at several developments in the Clarksburg SPA (Clarksburg Town Center, Clarksburg Village, Gateway Commons, and Greenway Village), as well as Traville in the Piney Branch SPA. Results of this monitoring will be presented as the monitoring requirements are fulfilled.

3.2.7 Cross Sections

Three completed projects monitored cross sections to document changes to the shape of the stream channel in response to changes to flows of water and sediment input. Monitoring was completed at Briarcliff Manor West (Paint Branch SPA) in 2006, All Souls Cemetery (Clarksburg SPA) in 2008, and Hunt Lion’s Den (Paint Branch SPA) in 2009. There was no impact to the shape of the stream channel in the monitored areas of Briarcliff Manor West and the stream channel geometry and flow regime were similar to pre-construction monitoring. Changes in the stream channel shape and area were observed during construction at the two cross sections monitored in Great Seneca Wildcat Branch on the All Souls Cemetery property. As reported in the SPA annual report for 2008, both stations were below the BMP outfall and appeared to stabilize post construction.

Six cross sections along the Right Fork of the Paint Branch were monitored for Hunt Lion’s Den. Results for this monitoring are inconclusive. Changes in stream channel geomorphology were observed at all six stations. Most notably, fallen trees at two of the cross sections created scour pools and additional erosion in 2006. Changes due to the fallen trees make it difficult to interpret the degree of change resulting from construction and development activities versus natural occurrences. No outstanding trend was observed at the only cross-section below the outfall of the stormwater management pond. A monitoring station map and data plots are in the Technical Appendix.
3.3 Sediment and Erosion Control (S&EC) BMP Monitoring

S&EC BMP performance is evaluated during construction by measuring the removal efficiency of total suspended solids (TSS). Information on evaluating BMP efficiency using percent removal is provided in the Technical Appendix. The removal efficiency is calculated from either grab sampling or automated samples that collect storm flow entering and leaving an S&EC structure. Results of the two sampling methods cannot be directly compared and are discussed separately.

3.3.1 Grab TSS Sampling

A manual grab sample is collected by inserting a container into the flow at the inlet(s) and a separate container into the flow at the outfall of a structure. Data collected via the grab sample method can be used to represent pollutant removal efficiency as the difference (expressed as a percentage) between the concentrations of pollutants entering the structure (influent) versus the concentration leaving the structure (effluent), but is not representative of the entire storm event. Monitoring using grab samples in the SPAs is conducted within 24 hours after qualifying storm events (typically events yielding total rainfall of at least 0.5 inches). Concentrations of suspended sediment and chemical parameters can vary throughout a storm event, with the first inch of rain over the impervious area (known as the “first flush”) often being the most pollutant-laden portion of the runoff.

Grab sampling may not always capture the first flush at the inlet and offers an instantaneous pollutant concentration at a discrete point in time entering and leaving a structure. This approach was used to sample the inflow and the discharge of a structure to see how relatively ‘dirty’ the water was entering a structure and how relatively ‘dirty’ the water was leaving a structure. Later, monitoring of an entire storm event using an automated sampler was utilized in order to calculate a loading of pollutants. Over time, the difficulties experienced by crews attempting to use auto-samplers to derive load estimates from S&E structures have resulted in relatively few successful samples while the qualitative grab samples at least provide a picture of S&E structure efficiency. The practice of collecting grab samples or other types of samples as a substitute for automated flow-weighted composite samples is no longer acceptable for SPA BMP monitoring.

A total of 121 grab samples have been collected from 2002 to 2009 from SPA S&EC structures (Technical Appendix). 2009 data were collected for seven storm events at two basins in the Clarksburg Village Phase I.

Monitoring results from grab samples (Fig. 3.9) continue to show S&EC structures receiving dirty, sediment-laden water are generally effective at reducing stormwater TSS concentrations, but with some variability in performance. Points above the diagonal line in Figure 3.9 indicate instances where a higher TSS concentration is measured in the water exiting the structure than entering.
S&EC structures receiving dirty, sediment-laden water (likely to occur during the early development periods involving cutting, filling, and grading) resulted in larger TSS concentration reductions than in samples with concentrations lower than 100 mg/L (which are often collected later in the construction process). For storm events where influent TSS concentrations were greater than or equal to 100 mg/L, the median TSS removal efficiency was 73.4% (Fig. 3.10). Median removal efficiency improved from the 2008 value of 70.1%. At concentrations below 100 mg/L, the results were much more variable with a median removal efficiency of only 18.1% (Fig. 3.11), the same efficiency as reported in 2008.

In some cases, water leaving the S&EC BMP contained higher concentrations of TSS than the entering water. The less polluted water (less than 100 mg/L) entering the S&EC structures could be the result of the sampling event taking place fairly late in the grading and site preparation process during the period where most of the cut and fill were completed. It may also be the result of soil compaction as final lot and road grades were maintained to the final surveyed grades. The higher outfall concentrations could be from the resuspension of fine clays and silts already in the control structure basin. As projects get closer to completion and less exposed earth is present on the site, there may be more sediment accumulated from prior storms being washed out of structures than is entering and settling in the trap.

The highest removal efficiency achieved at the two basins sampled during 2009 was 88.5%. This efficiency was achieved following a period where the trap was completely
dewatered, which appeared to improve trap efficiency. The trap was only holding and treating storm flow from one event.

Figure 3.10. Percent Difference of Inlet and Outlet TSS Concentrations From Grab Samples Where Influent TSS Values are Greater Than or Equal to 100 mg/L.

Figure 3.11. Percent Difference of Inlet and Outlet TSS Concentrations from Grab Samples Where Influent TSS Values are Less Than 100 mg/L.
3.3.2. Flow-weighted Composite TSS Sampling

Background

Automated samplers are used to collect stormwater samples at intervals based on the estimated duration of the storm event. Following the event, samples are manually composited based on the storm flow to characterize the quality of stormwater discharge. Storm load efficiencies are then calculated and BMP percent removal efficiency is used to compare the mass of pollutant entering the S&EC or SWM BMP structure versus the mass of pollutant leaving the structure.

Flow-weighted composite BMP sampling can be reported using several different methods (Strecker et al. 1999). Individual storm load efficiency was the method selected to analyze the SPA monitoring results. Load efficiency of a structure is considered more accurate than examining efficiency independent of water volume, as is the case for grab samples. Due to the limitations of grab sampling, data collected from the two methods cannot be directly compared.

Although a better measure of BMP efficiency, DEP and the consultants who perform the flow-weighted composite sampling for S&EC have found it extremely challenging to obtain quality data for a number of reasons including:

- Equipment problems,
- Structure configurations that do not allow for accurate sampling,
- Unaccounted for groundwater inputs, and
- Weather-related difficulties (i.e. insufficient rain amounts, storm events outside of normal business hours).

The configuration of a structure can change frequently as construction progresses, and occasionally some inlets stop receiving flow or additional inlets are installed between sampling events. Furthermore, some monitored structures were found to have intersected groundwater during installation. This resulted in continuous flow leaving the structure, making it difficult to define a storm flow event. Backwater at the inlets can make it impossible to capture a positive or accurate flow needed to calculate a pollutant load. Low flow entering or leaving the structure, as well as equipment anomalies and malfunctions, have also prevented the collection of flow-weighted data.

Automated Sampling Results

A limited amount of flow-weighted storm sampling data is available for S&EC basins. Automated sampling data from 28 storm events are now available from four basins in Clarksburg. Data and basin descriptions are in the Technical Appendix. Currently, in 2009, sampling was conducted at two projects, Gateway Commons and Greenway Village, producing data from seven storm events. Automated TSS sampling concluded in 2007 for Clarksburg Town Center Basin #3 and Stringtown Road Extension Basin#3.
MCDEP was notified in June 2010 by the monitoring consultant responsible for automated sampling at Clarksburg Town Center, Gateway Commons, and Stringtown Road Extension that a calculation error caused changes to the loadings results. This calculation error affects the historic data reported for flow-weighted composite TSS sampling. A discussion of the changes is presented for each project in the Technical Appendix.

It was previously reported in the 2008 SPA Annual Report that automated sampling data indicate that the S&EC structures monitored were receiving very sediment-laden water and were effective at reducing the loadings exiting the structures (Fig. 3.12). The same conclusion is drawn from the revised analysis that accounts for the calculation errors and includes the seven storms captured in 2009 (Fig. 3.13). However, there are differences in the magnitude of TSS loadings between Figs. 3.12 and 3.13 (as indicated by the scale bars). Corrected data (Fig. 3.13) reveal loading values nearly five times the amount previously reported (Fig 3.12).

![Figure 3.12. TSS Loadings Entering Versus Leaving for Three Sediment and Erosion Control Structures in Clarksburg (Automated Sampling Data) as reported in 2008 for 21 storm events.](image)

Generally, TSS removal efficiency was very high, with only three instances where loadings were reduced by less than 50%. Of the three, one storm event produced a negative percent removal of -44%, likely in response to an intense rain event. In 2009, median and average efficiency was greater than 70% overall (Fig 3.14).
Figure 3.13. TSS Loadings Entering Versus Leaving for Four Sediment and Erosion Control Structures in Clarksburg (Automated Sampling Data) for 28 storm events.

Figure 3.14. Average, Maximum, Minimum, and Median TSS Removal Efficiencies for monitored S&EC basins through 2009 (Automated Sampling Data).
Sediment Basin #3 was monitored for TSS during construction of Phase II-B of Clarksburg Town Center and consisted of two forebays and a main cell prior to conversion to SWM. Mass grading was initiated in late 2003, but TSS sampling did not begin until March 2005. Monitoring of Sediment Basin #3 concluded in March 2007. Site plans with monitoring locations and TSS concentration data from Sediment Basin #3 sampling are presented in the Technical Appendix.

The data from the eight storms indicate that the structure was overall effective at trapping sediment, but was somewhat variable in performance, as reported in 2008 (MCDEP 2010). It was previously reported that the eight monitored storms produced an average efficiency of 87%, with the highest removal efficiency reported at 97%. The lowest positive removal efficiency was reported at 43%. There was one occasion where a negative percent removal was reported, which is attributed sediment resuspension in response to a relatively intense rain event and low TSS concentrations entering the treatment system. A calculation error by the monitoring consultant caused a misrepresentation in the loadings reported for Clarksburg Town Center TSS monitoring. Table 3.1 presents the previously reported and corrected loading data; there was no resulting change in the calculated removal efficiency.

Table 3.1. Clarksburg Town Center Phase II-B Sediment Basin #3 Total Suspended Solids Loadings. Previously reported loadings are considered invalid due to calculation error.

<table>
<thead>
<tr>
<th>Date of Event</th>
<th>Storm Characteristics</th>
<th>Discharge Volume (cf)</th>
<th>Previously Reported TSS Loadings (lbs)</th>
<th>CORRECTED TSS Loadings (lbs)</th>
<th>TSS Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total (in)</td>
<td>Duration (hrs)</td>
<td>Return Interval</td>
<td>Inlets</td>
<td>Outfall</td>
</tr>
<tr>
<td>4/30/05</td>
<td>0.82</td>
<td>22.25</td>
<td>< 1 yr</td>
<td>65,488.4</td>
<td>57,292.9</td>
</tr>
<tr>
<td>5/19/05</td>
<td>1.04</td>
<td>14.15</td>
<td>< 1 yr</td>
<td>43,992.0</td>
<td>35,813.4</td>
</tr>
<tr>
<td>5/23/05</td>
<td>0.84</td>
<td>29.25</td>
<td>< 1 yr</td>
<td>57,025.0</td>
<td>38,853.0</td>
</tr>
<tr>
<td>5/11/06</td>
<td>1.76</td>
<td>13</td>
<td>< 1 yr</td>
<td>24,563.4</td>
<td>66,577.8</td>
</tr>
<tr>
<td>6/1/06</td>
<td>0.45</td>
<td>9</td>
<td>< 1 yr</td>
<td>64,989.2</td>
<td>78,096.6</td>
</tr>
<tr>
<td>9/1/06</td>
<td>1.95</td>
<td>31.58</td>
<td>< 1 yr</td>
<td>114,413.1</td>
<td>114,048.6</td>
</tr>
<tr>
<td>12/22/06</td>
<td>1.30</td>
<td>15.67</td>
<td>< 1 yr</td>
<td>62,710.9</td>
<td>16,393.2</td>
</tr>
<tr>
<td>3/15/07</td>
<td>2.09</td>
<td>47</td>
<td>< 1 yr</td>
<td>127,003.4</td>
<td>83,313.6</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† - Outlier. The negative TSS reduction during the September 1, 2006 storm was most likely due to low TSS concentrations in the runoff and resuspension of sediment in the trap.

Sampling difficulties were encountered that limited the dataset. In addition to instrument malfunctions, there were difficulties determining the necessary sampling locations to account for all stormwater inputs, low flow at some inlet pipes, and difficulties accounting for flow caused by groundwater. Sediment Basin #3 intercepted groundwater,
which made it difficult to determine when all the runoff from a storm event was discharged.

Table 3.2 presents data (previously reported and corrected for the calculation error) for three sampling events from 2005 where monitoring was extended to account for continuous flow from the outlet. A decrease in efficiency was observed when the sampling was extended and the continued flow of groundwater through the structure slowly carried enough sediment to reduce structure efficiency. Results should be used cautiously when interpreting the efficiency of the structure and the TSS loadings delivered to the stream from individual storms, particularly in light of the calculation errors that under-reported the total loadings of TSS.

Table 3.2. Total Suspended Solids Loadings and Percent Differences Observed During Extended Sampling at Clarksburg Town Center Phase II-B Sediment Basin #3. Previously reported loadings are considered invalid due to calculation error.

<table>
<thead>
<tr>
<th>Date of Event</th>
<th>Rain (in)</th>
<th>Rainfall Duration (hrs)</th>
<th>Return Interval</th>
<th>Duration of Extended Outfall Sampling (hrs)</th>
<th>Previously Reported TSS Loadings for Extended Outfall Sampling (lbs)</th>
<th>CORRECTED TSS Loadings for Extended Outfall Sampling (lbs)</th>
<th>TSS Reduction for Extended Outfall Sampling (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/30/05</td>
<td>0.82</td>
<td>22.25</td>
<td>< 1 yr</td>
<td>339.6</td>
<td>89</td>
<td>431.7</td>
<td>83%</td>
</tr>
<tr>
<td>5/19/05</td>
<td>1.04</td>
<td>14.15</td>
<td>< 1 yr</td>
<td>88.75</td>
<td>68.5</td>
<td>332.8</td>
<td>81%</td>
</tr>
<tr>
<td>5/23/05</td>
<td>0.84</td>
<td>29.25</td>
<td>< 1 yr</td>
<td>170.5</td>
<td>34.3</td>
<td>166.9</td>
<td>77%</td>
</tr>
</tbody>
</table>

In 2009, the developer at Clarksburg Town Center, Newland Homes funded an independent study to evaluate sediment loadings beyond requirements of the Final Water Quality Plan. The additional monitoring included: 1) surface water chemistry sampling for total suspended solids using a paired catchment design, and 2) pond outfall monitoring in three locations for total suspended solids.

Two stream stations were selected by the monitoring consultant with DEP consultation. A station was selected in the Town Center Tributary of Little Seneca Creek, upstream of Stringtown Road. In order to reference an existing staff plate for long-term flow monitoring, this station was placed approximately 45 meters downstream of the existing stream chemistry monitoring (grab sampling) station. A comparison station was selected in an unnamed tributary to Little Seneca Creek situated east of Route 27 (approximately 0.2 miles west of Hawkes Road). The comparison tributary has a comparable drainage area (DA) acreage and similar land use to conditions prior to the Clarksburg Town Center Development. No new development was planned for the Route 27 catchment at the time of the study. Drainage Area characteristics are provided in Table 3.3. A station map is located in the Technical Appendix.

Automated samplers were deployed at the two stations to capture baseflow and stormflow TSS flow-weighted, composite samples. Baseflow sampling occurred monthly and
storms were captured approximately twice per quarter year. Stream flow was logged continuously to compute a total annual loading of TSS.

Automated samplers were also deployed at the outfalls of the three largest/main ponds to obtain flow-weighted composite TSS storm samples. Two of these study ponds have been converted to SWM but may not be fully-functional. A description of the ponds is presented in Table 3.4. Table 3.5 presents a time table of construction and conversion activities associated with the ponds. The stream chemistry sampling station is downstream of the pond outfalls, below the confluence of the three tributaries (“west”, “center”, and “east”) that drain into the Town Center Tributary of Little Seneca Creek.

Table 3.3. Drainage area and land use compositions of the two stream chemistry monitoring stations established for the additional study independently-funded by the developer.

<table>
<thead>
<tr>
<th>2007 Land Use</th>
<th>Category Type</th>
<th>Clarksburg Town Center Tributary (DA = 240 acres)</th>
<th>Route 27 Tributary (DA = 169 acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>High Density</td>
<td>36.3%</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Medium Density</td>
<td>12.8%</td>
<td>2.6%</td>
</tr>
<tr>
<td></td>
<td>Low Density</td>
<td>7.4%</td>
<td>12.0%</td>
</tr>
<tr>
<td>Commercial</td>
<td>Retail</td>
<td>0.4%</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Institutional</td>
<td>-</td>
<td>4.2%</td>
</tr>
<tr>
<td>Agricultural</td>
<td>Cropland & Pasture</td>
<td>1.2%</td>
<td>71.1%</td>
</tr>
<tr>
<td>Forested</td>
<td></td>
<td>-</td>
<td>10.1%</td>
</tr>
<tr>
<td>Other</td>
<td>Bare Ground</td>
<td>16.1%</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Open Area</td>
<td>11.7%</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3.4. Characteristics of the Three Ponds Monitored at the Outfall for Total Suspended Solids Loadings as Part of an Additional Developer-funded Study in Clarksburg Town Center.

<table>
<thead>
<tr>
<th>Facility Designation</th>
<th>Location Description</th>
<th>Basin Description</th>
<th>Drainage Area</th>
<th>Capacity</th>
<th>Discharge Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pond 1 (Phase I-B)</td>
<td>East side of Clarks Crossing Drive</td>
<td>Converted SWM pond – Main cell (dry pond) + 3 sand filters</td>
<td>67.6 acres</td>
<td>359,805 cubic feet</td>
<td>Concrete outfall @ west side of Clarks Crossing Dr.; discharges to eastern tributary (one of three) of the Town Center Tributary, North of Stringtown Road</td>
</tr>
<tr>
<td>Pond 2 (Phase I-A)</td>
<td>West side of Overlook Park Drive</td>
<td>Dual Cell S&EC Basin</td>
<td>95.3 acres</td>
<td>398,295 cubic feet</td>
<td>Corrugated metal outfall to the western tributary of the Town Center Tributary, North of Stringtown Road</td>
</tr>
<tr>
<td>Pond 3 (Phase II-B)</td>
<td>Burdett Avenue</td>
<td>Converted SWM – Dry pond with sand filter, bioretention, vegetated swales, and StormCeptor pre-treatment</td>
<td>44.5 acres</td>
<td>89,280 cubic feet</td>
<td>Drains to the eastern tributary of the Town Center Tributary, North of Stringtown Road</td>
</tr>
</tbody>
</table>
Table 3.5. Progress of Construction in the Drainage Areas (DAs) to the Three Monitored Ponds. Pond Characteristics are described in Table 3.4.

<table>
<thead>
<tr>
<th></th>
<th>Pond 1 (Phase I-B)</th>
<th>Pond 2 (Phase I-A)</th>
<th>Pond 3 (Phase II-B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiation of Mass Grading</td>
<td>Date not provided</td>
<td>Date not provided</td>
<td>2003 (3rd Quarter)</td>
</tr>
<tr>
<td>Completion of Mass Grading and Road Paving</td>
<td>Date not provided</td>
<td>Date not provided</td>
<td>2004 (3rd Quarter)</td>
</tr>
<tr>
<td>0 to 30% units within DA constructed</td>
<td>Date not provided</td>
<td>Date not provided</td>
<td>2004 (4th Quarter)</td>
</tr>
<tr>
<td>30 to 60% units within DA constructed</td>
<td>2003 (4th Quarter)</td>
<td>2005 (2nd Quarter)</td>
<td>2005 (2nd Quarter)</td>
</tr>
<tr>
<td>60 to 100% units within DA constructed</td>
<td>2006 (3rd Quarter)</td>
<td>Planned – 2011 (2nd Quarter)</td>
<td>2008 (3rd Quarter)</td>
</tr>
<tr>
<td>S&EC Conversion to SWM</td>
<td>2008 (2nd Quarter)</td>
<td>Planned – 2012 (3rd Quarter)</td>
<td>2012 (3rd Quarter)</td>
</tr>
</tbody>
</table>

Monitoring for the additional study occurred from October 2008 to September 2009. Thirteen stream baseflow samples at both stream stations were collected over this period. Seven storm events were captured at both stream stations. Four other attempts to collect samples at both stations failed due to equipment malfunctions caused by rodent damage and issues with sampler tubing and sensor placement. Beaver activity in the Clarksburg Town Center Tributary downstream of the sampling station also created difficulty with obtaining reliable flow data.

A total loading estimate was calculated to include both baseflow and stormflow transport of TSS at the two instream chemistry stations. A description of this calculation is presented in the Technical Appendix. Estimated annual loadings are presented in Table 3.6. The total annual estimated loading at the Town Center Tributary was 117% higher than the loading at the comparison station. When normalized by acreage, the annual estimated loading per acre at the Town Center Tributary station site was 53% greater than at the comparison station. Statistical analysis performed on individual baseflow and stormflow loading data showed no significant differences in loadings between the two stations (Jones 2010b; Technical Appendix).

Table 3.6. Estimated Annual Average Loadings at Instream Stations Monitored for Additional Developer-funded Study in Clarksburg Town Center

<table>
<thead>
<tr>
<th>Station</th>
<th>Baseflow Load (lbs); n=7</th>
<th>Stormflow Load (lbs); n=7</th>
<th>Total Load (lbs)</th>
<th>Total Load (lbs) per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Town Center Tributary (above Stringtown Rd)</td>
<td>536</td>
<td>11,616</td>
<td>12,151</td>
<td>51</td>
</tr>
<tr>
<td>Rte 27 Comparison Trib</td>
<td>1,032</td>
<td>4,568</td>
<td>5,599</td>
<td>33</td>
</tr>
</tbody>
</table>

Eight storm events were monitored as part of the pond TSS evaluation, but only one storm produced monitoring results at all three monitored outfalls (Table 3.7). The storm where samples were obtained at all three outfalls was a two year storm event (Table 3.8). Low flow conditions and unreliable flow rates limited the data set (Table 3.8). The low
flow conditions are primarily attributed to the stormwater management structures attenuating flow (quantity control). Negative and unreliable flow values for Pond 2, the only S&EC basin monitored, are attributed to a backwater issue and irregularities in the structure of the piping. Four of storms had a corresponding instream TSS sampling event, but not all ponds produced sampling data, making comparisons difficult.

Table 3.7. Results for TSS Sampling of Three Pond Outfalls in Clarksburg Town Center.

<table>
<thead>
<tr>
<th>Storm date</th>
<th>Pond 1</th>
<th>Pond 2</th>
<th>Pond 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc. (mg/L)</td>
<td>Load (lbs)</td>
<td>Conc. (mg/L)</td>
</tr>
<tr>
<td>9/5/2008</td>
<td>10</td>
<td>71.8</td>
<td>35</td>
</tr>
<tr>
<td>9/25/2008</td>
<td>5</td>
<td>10.4</td>
<td>21</td>
</tr>
<tr>
<td>10/28/2008</td>
<td>n.s.</td>
<td>4</td>
<td>0.0</td>
</tr>
<tr>
<td>1/6/2009</td>
<td>3</td>
<td>17.6</td>
<td></td>
</tr>
<tr>
<td>4/13/2009</td>
<td>4</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>9/26/2009</td>
<td>14</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>10/14/2009</td>
<td>11</td>
<td>88.2</td>
<td>1</td>
</tr>
</tbody>
</table>

* - Concentration below detectable limit

Table 3.8. Rainfall and discharge characteristics for TSS Sampling of Three Pond Outfalls.

<table>
<thead>
<tr>
<th>Storm date</th>
<th>Rain (in)</th>
<th>Rainfall Duration (hrs)</th>
<th>Rainfall Return Interval (yr)</th>
<th>Discharge (cf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pond 1</td>
</tr>
<tr>
<td>9/5/2008</td>
<td>3.55</td>
<td>17.67</td>
<td>2</td>
<td>115,016.8</td>
</tr>
<tr>
<td>9/25/2008</td>
<td>1.88</td>
<td>62.25</td>
<td>< 1</td>
<td>33,220.2</td>
</tr>
<tr>
<td>10/28/2008</td>
<td>1.32</td>
<td>15.17</td>
<td>< 1</td>
<td>386.5</td>
</tr>
<tr>
<td>1/6/2009</td>
<td>1.5</td>
<td>24.92</td>
<td>< 1</td>
<td>94,040.3</td>
</tr>
<tr>
<td>4/13/2009</td>
<td>0.52</td>
<td>48.42</td>
<td>< 1</td>
<td>8,536.8</td>
</tr>
<tr>
<td>5/28/2009</td>
<td>1.12</td>
<td>30.25</td>
<td>< 1</td>
<td>75,866.7</td>
</tr>
<tr>
<td>9/26/2009</td>
<td>1.24</td>
<td>16.5</td>
<td>< 1</td>
<td>14,255.2</td>
</tr>
<tr>
<td>10/14/2009</td>
<td>2.9</td>
<td>88</td>
<td>< 1</td>
<td>128,445.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pond 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>227,268.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,707.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,498.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9,730.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18,876.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30,550.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,536.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51,843.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26,597.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14,255.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17,257.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46,574.7</td>
</tr>
</tbody>
</table>

This study was performed during conditions when very little construction was taking place and after conversion to SWM for two of the ponds. During the monitoring period, Pond 1 was a converted SWM designed to treat a built-out portion of the development, Pond 2 was a sediment basin below a roughly-graded area, and Pond 3 was a converted SWM basin in a nearly built-out, largely completed, portion of the development. SWM BMPs are not designed to treat stormwater with large amounts of TSS that are present during mass grading and large scale, widespread earth disturbance activities. Conversion to SWM occurs after site stabilization; less sediment is inherently present under these conditions.
The results of this study do not reflect the TSS conditions during earlier stages of construction, but indicate that TSS concentrations and loadings are present in higher amounts in the Town Center Tributary at the monitored station than at a comparison stream station that is with no new construction and predominantly agricultural land use with less dense residential development. Conclusions regarding whether sediment inputs were new, residual, or resulting from a chronic condition cannot be made with this study design. Furthermore, the impacts on water quality and aquatic life cannot be assessed due to the lack of a paired biological monitoring station. Although LSLS103C is approximately 100 meters downstream of the Town Center Tributary sampling station, the closest biological monitoring station to the Route 27 comparison station is over 1200 meters downstream of the chemistry station (LSLS202).

Stringtown Road Extension

Sediment Basin #3 is an oversized single cell basin located in the northwestern corner of the Gateway Commons development, adjacent to the Stringtown Road – Gateway Center Drive junction. A map and sampling diagram is in the Technical Appendix. The basin treats 12.9 acres of runoff from Stringtown Road Extension and Gateway Commons. It then discharges to an existing off-site stormwater management pond to the west of Gateway Center Drive before the stormwater reaches a tributary of Ten Mile Creek. This tributary flows into the second order tributary of Ten Mile Creek monitored by DEP at LSTM206. Biological monitoring results are presented in Section 5.

TSS sampling at the inlet and the outlet of Sediment Basin #3 took place from September 2006 through December 2007. Construction on the Stringtown Road Extension has been completed since November 2006, but Basin #3 will not be converted to SWM until construction is completed at Gateway Commons. As of November 2008, 30 to 60% housing units in Gateway Commons within the drainage area of Basin #3 were constructed.

TSS loading removal efficiency for three storms at Stringtown Road Extension Basin #3 ranged from 89% to 100% with an average removal of 94% (Table 3.9). A calculation error by the monitoring consultant under-represents actual loading data; corrected loadings from those reported in the 2008 Annual Report are also presented in Table 3.4.

The first two monitored storms did not produce measurable flow and a low flow strainer was installed prior to the third monitoring event. Measured TSS loadings at the outfall were very low, with only one event measuring over a full pound. Although the TSS loadings entering in the stormwater were also comparably low, the monitored storm event on June 28, 2007 demonstrates the capacity of this structure to also handle much larger sediment loads with excellent efficiency.

The high TSS load removal efficiency may be partially attributed to the reduction of flow leaving the structure due to the basin sizing. The basin has a capacity of 58,071 cubic feet (cf), which is 125% of what would normally be required in non-SPA developments. The basin was mucked out on May 30, 2006, prior to any sampling events. Due to the status.
of the Gateway Commons development, construction activities, and thereby sediment, entering the treatment system may have also been limited.

All storm events captured at Stringtown Road Extension were below the one year return interval. A backwater issue that occurred during the March 15, 2007, rain event suggests that performance of the basin could be diminished under larger storm events. Larger and more intense storms may cause re-suspension of existing sediment in the basin. TSS load removal capacity may also differ now that portions of the drainage area are under construction for Gateway Commons as of March 2008.

Table 3.9. Stringtown Road Sediment Basin #3 Total Suspended Solids Loadings. Previously reported loadings are considered invalid due to calculation error.

<table>
<thead>
<tr>
<th>Date of Event</th>
<th>Storm Characteristics</th>
<th>Discharge Volume (cf)</th>
<th>Previously Reported TSS Loadings (lbs)</th>
<th>CORRECTED TSS Loadings (lbs)</th>
<th>TSS Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inlet</td>
<td>Outfall</td>
<td>Inlets</td>
<td>Outfall</td>
</tr>
<tr>
<td>9/1/06</td>
<td>1.95</td>
<td>31.58</td>
<td>< 1 yr</td>
<td>7,852</td>
<td>1,402</td>
</tr>
<tr>
<td>9/28/06</td>
<td>0.79</td>
<td>5.5</td>
<td>< 1 yr</td>
<td>1,612</td>
<td>414</td>
</tr>
<tr>
<td>3/15/07 *</td>
<td>2.09</td>
<td>47</td>
<td>< 1 yr</td>
<td>** 10,872</td>
<td>** 2.09</td>
</tr>
<tr>
<td>4/11/07 *</td>
<td>0.84</td>
<td>7.42</td>
<td>< 1 yr</td>
<td>2,917</td>
<td>655</td>
</tr>
<tr>
<td>6/28/07 *</td>
<td>0.79</td>
<td>0.67</td>
<td>< 1 yr</td>
<td>3,457</td>
<td>269</td>
</tr>
<tr>
<td>12/2/07 *</td>
<td>0.57</td>
<td>8.33</td>
<td>< 1 yr</td>
<td>1,843</td>
<td>811</td>
</tr>
</tbody>
</table>

* - Low flow strainer installed to facilitate sampling at the outfall (Jones 2008a)
** - Upstream discharge for 3/15/2007 event is inaccurate due to backwater in pipe. No loading could be calculated.
n.s. - No samples collected due to low water levels in outfall pipe.
n/a - not applicable. TSS reduction not calculated when inlet or outlet data missing.

Gateway Commons Sediment Basin #2 (Clarksburg SPA)

Monitoring for TSS at Sediment Basin #2, a dual cell structure, was ongoing in 2009. Sampling occurred from April through October 2006 and September 2008 through December 2009. Site plans and additional monitoring information are in the Technical Appendix. The Monitoring of Sediment Basin #2 commenced over one year after the start of construction. All storm samples were collected after roads and storm sewers were in place, and the site was stabilized on February 15, 2006. Monitoring was initially delayed because of the need to finalize the basin configuration and to direct overland flows to the basin. Construction activities stopped in March 2006 and did not begin again until September 2008.

Three sampling stations were established to evaluate the redundancy features of this basin (see Technical Appendix). During the first year of sampling, low flow conditions at the outfall prevented acquisition of TSS samples at the outfall (Table 3.10). Backwater issues
were also reported at the first sampling station, which may be due to the inefficient emptying of the upper cell through the dewatering device. Backwater issues were typically observed during the middle and concluding stages of the storm (Jones 2010a).

A total of 12 storms have been captured at Gateway Commons Basin #2, five of which were captured for the 2009 monitoring year (Table 3.10). Any data reported prior to the 2009 monitoring year were affected by a calculation error that caused loading amounts to be under-represented. Corrected results from those presented in the Annual Report for 2008 are presented alongside previously reported results where applicable (Table 3.11).

Table 3.10. Storm Characteristics for the Twelve Monitored Events at Gateway Commons S&EC Basin #2. Events denoted in bold were sampled for the 2009 Monitoring Year.

<table>
<thead>
<tr>
<th>Date of Event</th>
<th>Storm Characteristics</th>
<th>Discharge Volume (cf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total (in)</td>
<td>Duration (hrs)</td>
</tr>
<tr>
<td>4/21/06</td>
<td>1.11</td>
<td>40.67</td>
</tr>
<tr>
<td>5/11/06</td>
<td>1.76</td>
<td>13</td>
</tr>
<tr>
<td>9/1/06</td>
<td>1.95</td>
<td>31.58</td>
</tr>
<tr>
<td>9/28/06</td>
<td>0.79</td>
<td>5.5</td>
</tr>
<tr>
<td>9/25/08</td>
<td>1.88</td>
<td>62.25</td>
</tr>
<tr>
<td>12/16/08</td>
<td>0.64</td>
<td>19.1</td>
</tr>
<tr>
<td>1/6/09</td>
<td>1.50</td>
<td>24.92</td>
</tr>
<tr>
<td>4/14/09</td>
<td>0.52</td>
<td>48.42</td>
</tr>
<tr>
<td>5/28/09</td>
<td>1.12</td>
<td>30.25</td>
</tr>
<tr>
<td>9/26/09</td>
<td>1.24</td>
<td>16.5</td>
</tr>
<tr>
<td>10/14/09</td>
<td>2.90</td>
<td>88</td>
</tr>
<tr>
<td>12/2/09</td>
<td>0.62</td>
<td>21.92</td>
</tr>
</tbody>
</table>

n.s. * - Low flow conditions prevented sampling for TSS.
** - Backwater conditions. Flow values represent calculated adjustments.

Table 3.11. TSS Monitoring Results for Gateway Commons Sediment Basin #2. Events denoted in bold were sampled for the 2009 Monitoring Year and have not been previously reported.

<table>
<thead>
<tr>
<th>Date of Event</th>
<th>TSS Loadings Previously Reported (lbs)</th>
<th>TSS Loading Reduction Previously Reported (%)</th>
<th>CORRECTED TSS Loadings (lbs)</th>
<th>CORRECTED TSS Loading Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Station #1 (in)</td>
<td>Station #2 (mid)</td>
<td>Station #3 (out)</td>
<td>Upper Cell (#1 to #2)</td>
</tr>
<tr>
<td>4/21/06</td>
<td>18.0</td>
<td>3.4</td>
<td>n.s.</td>
<td>81% *</td>
</tr>
<tr>
<td>5/11/06</td>
<td>10.6</td>
<td>0.8</td>
<td>n.s.</td>
<td>92% *</td>
</tr>
<tr>
<td>9/1/06</td>
<td>0.3</td>
<td>n.s.</td>
<td>n.s.</td>
<td>* *</td>
</tr>
<tr>
<td>9/28/06</td>
<td>2.4</td>
<td>n.s.</td>
<td>n.s.</td>
<td>* *</td>
</tr>
<tr>
<td>9/25/08</td>
<td>38.3</td>
<td>9.9</td>
<td>0.5</td>
<td>74% 99%</td>
</tr>
<tr>
<td>Date</td>
<td>Flow</td>
<td>TSS</td>
<td>Removal Efficiency</td>
<td>Efficiency</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>-----</td>
<td>--------------------</td>
<td>------------</td>
</tr>
<tr>
<td>12/16/08</td>
<td>9.9</td>
<td>37.1</td>
<td>-273%†</td>
<td>95%</td>
</tr>
<tr>
<td>1/6/09</td>
<td>42.0</td>
<td>2.0</td>
<td>95%</td>
<td>99%</td>
</tr>
<tr>
<td>4/14/09</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>5/28/09</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>9/26/09</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>10/14/09</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>12/2/09</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

n.s. - No samples collected due to low flow conditions.

n/a - Not applicable. Calculation error discovered during 2009 sampling; no prior values reported.

* - Not evaluated; no water samples collected at station.

† - Outlier. Negative removal efficiency for 12/16/2008 storm may be the result of resuspension of TSS in the first cell from previous rainfall occurring 12/10-12/12/2008 and a bypass of flow.

The data available from the 12 storm events show very little sediment (maximum 12.3 pounds during the December 2009 storm) leaving the structure (Table 3.11, Station #3). There are several instances where the automated samplers were unable to capture the flow needed to collect a stormwater sample. Discharge volume measurements at Station #3 show that the lower cell tends to trap any excess water released from the upper cell (Table 3.10).

Although previous monitoring results have suggested very high removal efficiency (over 90%) for the dual cell basin, 2009 monitoring results suggest a decline over time. Removal efficiencies ranged from 75% to 86% in 2009 for the three storms with measurable TSS at the outfall. This could be due to a need for maintenance of the structures being monitored, not necessarily because of a failure in performance.

A decline in the monitored performance of the upper cell alone was also observed. TSS loading reduction in the first cell could only be calculated for one storm monitored for the 2009 cycle. The event on 05/28/2008 produced a TSS reduction of 99.6%. However, this value is deceptively high. Minimal flow (36.2 cubic feet (cf)) was measured at Station #2, but much more substantial flow was measured entering the upper cell and leaving the lower cell (12,910.2 and 1,233.9 cfs, respectively). Flow during this monitoring event was very likely to have moved from one cell to the next by a means other than through the riser and sampling apparatus, perhaps by overtopping the riser. Water backing up from the first cell into the pipe containing the sampling apparatus may also have distorted the flow values collected at Station #1.

Backwater issues at the inlet sampling station caused by the reduced emptying of the upper cell through the dewatering device contributed to the declined performance, suggesting a need for maintenance. The apparent decline in efficiency appears to be attributable to greater flows leaving the structure than observed for previously monitored storms. In May 2010, the consultant doing the monitoring noted that the upper cell dewatering device was apparently in need of inspection. Over the course of monitoring, it was observed that very little flow comes from the upper cell to the lower and that any flow that does move between the cells overtops the riser or comes through its seams (T. Jones, personal communication).
It appears that the first cell is in need of maintenance and is contributing to the observed
decrease in performance of the overall structure. However, the first cell is designed to
back up as the basin fills with sediment. The redundancy feature provided by the lower
cell compensates for the upper cell and decreases the loadings leaving the entire system.
The overall removal efficiency and performance is better than the TSS load reduction of
one cell alone.

| Redundant cells are effective in reducing stormwater runoff and decreasing sediment loadings. |

The majority of Gateway Commons drains to Little Seneca Creek and biological
monitoring stations LSLS102 and LSLS302. LSLS102 was established and first
monitored in 2005 to more closely monitor the effects of the Gateway Commons
development. Monitoring at this station ceased while construction was on hold.
Monitoring was reinstated at LSLS102 in 2010 and results will be presented in the 2010
SPA Annual Report.

Greenway Village (Clarksburg SPA)

Greenway Village is a 374 acre mixed residential development immediately south of
Skylark Road and west of Ridge Road (Route 27). The property was cropland and forest
prior to development activities. Several tributaries of Little Seneca Creek run through the
property.

Development is occurring in phases. Phases I-II are completed and post construction
monitoring for that portion is anticipated to begin in late 2010 once both post
construction bonds have been posted. A two-celled sediment trap was monitored from
June 2005 to October 2006 using grab sampling. Conversion from S&EC to SWM was
completed by July 2007.

Phases III-V is in various stages of completion, with some portions undergoing active
construction. The southeastern portions are undergoing the most land disturbance, with
grading and fill operation on the proposed school site. In addition, some localized ground
breaking, grading and paving activities have been also been reported through October
2009.

Monitoring of Sediment Trap #7/7A in Phases III-V began in August 2007 is ongoing.
Sediment Trap #7/7A is a two-celled trap consisting of a forebay and a main cell treating
a 32.5 acre drainage area. The trap was installed in July 2007 and received maintenance
in July 2009. During the July 2009 maintenance, the trap was dewatered to remove
sediment and clean out portions of the inflow pipes affected by a series of heavy rains.
Automated flow-weighted composite sampling data from Greenway Village is only available from two storms at Sediment Trap #7/7A. Equipment malfunction due to operator error, backwater, high flows that displaced the suction tube, and insufficient water levels were cited as the reasons for the lack of data. Calibrated weirs were installed in May 2009 to help create the water levels needed for sampling. A sample from a storm event on October 27, 2009 was successfully captured after weir installation. The only other storm event producing flow-weighted composite sampling results occurred on November 15, 2007. The TSS removal efficiencies for the two monitored storm events were 43.8% and 71.6%, respectively. More data are needed to evaluate this structure and reveal trends. A property map, sampling diagram, and table of storm data collection attempts to date are in the Technical Appendix.

3.4 Stormwater Management (SWM) BMP Monitoring

Post construction BMP monitoring evaluates the efficiency of SWM BMPs in reducing pollutant loadings and the effectiveness of BMPs at achieving site performance goals. Detailed discussion on specific SWM BMP structures are provided in the Technical Appendix. The BMPs in the SPAs are configured in redundant treatment trains to optimize performance. A diagram of a labeled SPA site plan with redundant SWM BMPs is provided in the Technical Appendix. Post construction monitoring cannot begin until the construction on the property is complete, the site is stabilized, and the S&EC structures are converted to SWM structures. A post construction monitoring bond is posted and a permit is issued (Section 2.1.3). Monitoring can extend up to five years on large projects.

Data are collected by using automated samplers to collect flow-weighted composite storm samples. Although not as difficult as sediment control structures, monitoring SWM structures is quite challenging. Ponding or backwater issues, equipment failure, or flow measurement distortion have continued to limit the amount of available flow-weighted composite data that can be evaluated for BMP efficiency of SWM structures.

In 2009, SWM BMP monitoring occurred at four properties, three (Clarksburg Ridge, Summerfield Crossing, and Parkside) in the Clarksburg SPA and one in the Paint Branch SPA (Briarcliff Meadows). Structures to be monitored in the Clarksburg SPA include a BaySeparator™ and a two-cell surface sand filter at Clarksburg Ridge, a SWM treatment train of two sand filters and a dry pond at Summerfield Crossing, and a Stormfilter® on a different portion of the property. A temperature study on the surface sand filter at Parkside began June 2009.

Structures to be monitored in the Upper Paint Branch SPA include a “side-by-side” comparison of two SWM BMPs at Briarcliff Meadows, formerly referred to as Briarcliff Meadows North and South. Results from the monitoring of the surface sand filter on the north portion of the property will be directly compared to the monitoring results produced from the biofilter on the southern portion. Both SWM BMPs are designed to treat stormwater from the single-family houses in the development. The surface sandfilter has a 3.8 acre drainage area (DA); the biofilter has a 1.75 acre DA.
3.4.1 Background on Monitored Technologies

Surface Sand Filters

A surface sand filter is a media filter. It is best-suited for managing the high concentration of pollutants in the volume generated by the first inch of rain (also known as the first flush). The Montgomery County Sand Filter design is essentially a shallow, dry stormwater management facility which incorporates a sand filter and an underdrain. Pre-treatment is provided by a grass filter strip or other structural means (MCDPS 2009).

The sand filters are designed to include a recharge area beneath the filter medium and underdrain pipe to promote infiltration into suitable soils. The water remaining in the structure below the level of the underdrain pipe will percolate into underlying soils with suitable infiltration rates. SPA performance goals encourage the use of infiltration to reduce storm flow runoff and recharge groundwater to help maintain stream base flows.

Sand filters have a range of removal efficiencies and are generally effective at removing total suspended solids, with removal efficiencies of 66% to 95% reported in the literature (Technical Appendix).

Surface sand filter performance was evaluated at two SPA developments. Monitoring results for Willow Oaks (Piney Branch SPA) and Snider’s Estates (Paint Branch SPA) are discussed in detail in the 2008 SPA Annual Report and data are presented in the 2008 Section 3 Technical Appendix (MCDEP 2010). A summary of monitoring results follows.

Willow Oaks (Piney Branch SPA) is an 8 acre, 14 single family lot cluster option development. Two surface sand filters in series provide quality control for stormwater. Monitoring of metals, nutrients, and suspended solids was required at three locations: 1) upstream of the first sand filter following vegetated pre-treatment strips; 2) between the sand filters; 3) at the outlet of the second sand filter.

Monitoring results were produced from July 2005 through March 2008 for thirteen storms. Median removal efficiency for all monitored parameters was greater than 69% and consistent with literature reported values. Removal efficiency ranged from 20.2% to 99.6% for all parameters. Monitoring at Willow Oaks revealed that the monitored SWM BMPs achieved high pollutant removal efficiency success for the monitored storms and that two surface sand filters in series were more effective than the use of one structure alone. The design of the surface sand filters to promote infiltration and retain runoff in the sand layers is largely attributable to this success.

The 8.1 acre Snider’s Estates subdivision consists of six residential lots in a medium-density residential layout. SWM consists of a sand filter and dry pond in series. The original monitoring hypothesis was limited to examining measured flows against the TR-20 model predictions. However, flow data were collected from the outfall of sand filter (quality control structure) and not from the outfall of the dry pond (quantity control
structure), so this comparison could not be made. Instead, data were used for an assessment of the sand filter’s flow reduction alone.

Post construction monitoring began in December 2004 and concluded in late 2007; 15 storms were measured and characterized; six storms had return intervals greater than one year. When examining the flow values of the sand filter alone, three out of the six characterized storms fell within the expected peak flow range of the design model for the entire pond 1 system (sand filter and SWM dry pond), suggesting that the sand filter was contributing to the flow attenuation in the entire treatment train. It appeared that factors such as a decrease in annual rainfall and accompanying extended dry periods and the growing lawns and vegetation in the residential lots may have also influenced measured flows leaving the sand filter. The sand filter is primarily for quality control; primary stormwater control was provided in a downstream SWM.

Data collection on several sand filters was occurring in 2009. A summary of the structures is provided in Table 3.12. Monitoring details and results are presented in Section 3.4.2.

<table>
<thead>
<tr>
<th>SPA</th>
<th>Project</th>
<th>Design</th>
<th>Pretreatment</th>
<th>Capacity (cubic feet (cf))</th>
<th>Drainage Area (acres)</th>
<th># of Reported Storm Monitoring Attempts **</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarksburg</td>
<td>Clarksburg Ridge</td>
<td>Dual Cell in Series</td>
<td>BaySeparator</td>
<td>9245 (for Pond C)</td>
<td>6.97 (5.53 pretreated)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Parkside</td>
<td></td>
<td>Not specified</td>
<td>Not specified</td>
<td>Not specified</td>
<td>n/a*</td>
</tr>
<tr>
<td></td>
<td>Summerfield Crossing</td>
<td>Two sand filters in series</td>
<td>Vegetated swale, Bay Saver</td>
<td>582,250</td>
<td>Not specified</td>
<td>1</td>
</tr>
<tr>
<td>Upper Paint</td>
<td>Briarcliff Meadows</td>
<td>Single Cell</td>
<td>Vegetated Swales</td>
<td>Not specified</td>
<td>3.8</td>
<td>2</td>
</tr>
<tr>
<td>Branch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* - The sand filter at Parkside is being monitored for continuous temperature from June through September, annually.
** - Monitoring attempts may not necessarily produce sampling data or results.

Biofilters

A biofilter is a landscaped area or shallow stormwater basin that utilizes soils (often engineered), vegetation, and microbes to capture and treat runoff. Stormwater then collects in an underdrain system at the bottom of the filter bed and is directed to the storm drain system. Biofilters are a type of bioretention area that emphasizes filtration.

Bioretention areas like biofilters are a good option in cold water (trout) streams because
they only have standing water for a short period of time, preventing potential thermal impacts from stormwater (SMRC 2010).

In Montgomery County, biofiltration is defined as a soil filtration system with these principal components (MCDPS 2005; See Technical Appendix for structure diagram and photographs):

1) a pretreatment grass filter strip,
2) surface planting with woody and herbaceous plant species,
3) a surface 2 to 3 inch thick mulch layer,
4) a minimum two foot planting media,
5) a six inch thick sand layer, and
6) a perforated PVC pipe underdrain within a 15 inch gravel bed.

Montgomery County DPS restricts the use of biofiltration for the treatment of the water quality volume from drainage areas of 1.0 acres or less. The facility must be sized to store and treat the “first flush” of stormwater pollutants generated from impervious surfaces. An overflow structure is used to convey flow from large storms (that are not treated by the bioretention area) to the storm drain system.

Monitoring began on a biofilter at Briarcliff Meadows (Upper Paint Branch SPA) in 2009. Two storms events were monitored but there are no results to present in 2009. See to Section 3.3.2 for monitoring details.

Stormfilter®

The StormFilter® (hereafter “StormFilter”) is an underground BMP incorporated into the storm drain network and can be a standalone structure. It is a proprietary device (manufactured by Stormwater Management, Inc.) in which water flows through a filter media, or filter cartridges, to remove pollutants. The typical StormFilter unit is composed of three bays: 1) the inlet bay, 2) the filtration bay, and 3) the outlet bay. A structural diagram is provided in the Technical Appendix. StormFilters are designed to trap and absorb sediments, oil and grease, soluble heavy metals, organics, and soluble nutrients from stormwater. The StormFilter cartridges can be filled with an array of media, which are typically selected to treat the specific pollutant loadings at each site in order to promote higher pollutant removal performance (Water Online, 2010; Contech 2009, Contech 2007). Montgomery County currently approves one type of filter media.

Hydrodynamic Device: BaySeparator™

The BaySeparator™ (hereafter, “BaySeparator”) is a *hydrodynamic device*. Hydrodynamic devices use the flow and direction of water to remove pollutants. Some pollutants, such as oils, rise and float, while others, like sediment, sink to the bottom and settle out from the stormwater. The BaySeparator serves as pre-treatment to other SWM BMPs in a treatment train.
The BaySeparator treatment system consists of three components: 1) the Primary Manhole, 2) BaySeparator unit, and 3) the Storage Manhole. A structure diagram is provided in the Technical Appendix. The BaySeparator component itself directs stormwater flow to the two manholes for pollutant removal. Stormwater influent passes through the primary manhole for initial separation, and coarse sediment (e.g., sand, gravel) is collected. The stormflow then enters the BaySeparator Unit by way of a weir and the BaySeparator re-directs the flow to a Storage Manhole. The Storage Manhole provides further treatment by collecting suspended solids, oils, grease and floating trash and debris. Treated stormwater re-enters the system through the Separator unit. Pollutants remain trapped in the two manholes until they are removed (by a vacuum truck or similar device) during routine maintenance.

Typically, hydrodynamic separators perform better under low flow conditions than they do during high flows. The manufacturer, BaySaver Technologies, Inc. (2008), asserts that the BaySeparator unit is designed to prevent water from backing up in the storm drain system and resuspension of pollutants during high flow events. It is advertised that under frequent, low flow conditions, the BaySeparator system can remove “80% or more of the annual sediment load from a given site” (BaySaver Technologies, 2008).

Performance of 3K (3,000 gallon) BaySeparator pre-treating a two-cell series sand filter (Pond C) was monitored in 2009 at Clarksburg Ridge (Clarksburg SPA).

Hydrodynamic Device: StormCeptor®

A Stormceptor® (hereafter “Stormceptor”) is another hydrodynamic device that uses the flow and direction of water to remove pollutants. The Stormceptor slows incoming stormwater to reduce turbulence, allowing oils to rise and sediments to settle. All flows greater than the maximum allowed flow rate are bypassed. A structure diagram is in the Technical Appendix.

Monitoring at Cloverly Safeway is discussed in detail in the 2008 SPA Annual Report and data are available in the related appendix (MCDEP 2010). Overall it was found that pollutant concentrations entering the device were so low that they were below the reportable detection limit and could not be evaluated No other Stormceptors are currently being monitored or are planned to be monitored at this time but other types of hydrodynamic devices will be monitored.

3.4.2 2009 SWM BMP Monitoring Results

Clarksburg Ridge

Clarksburg Ridge is an approximately 34 acre residential neighborhood consisting of 101 single-family detached and 58 single-family attached townhouse units. Prior to development, the parcel was primarily forested and meadow with two existing on-site houses. The project broke ground in March 2003 and construction occurred through December 2004. Conversion of BMPs from S&EC to SWM was completed in September.
2006 and SWM as-builts were approved in January 2008. The post construction monitoring permit was issued April 25, 2008.

The SWM BMP treatment train being monitored consists of a BaySeparator serving as pre-treatment for a two-cell series sand filter (Pond C). Post construction monitoring began in May 2008 at three sampling locations: 1) Upstream of the BaySeparator, 2) Downstream of the BaySeparator at the inlet to the upper sand filter, 3) at the Pond Outfall, after the second sand filter.

Out of ten sampling events, only two were successfully captured and sent for laboratory analysis. Loadings for these storms could not be calculated due to unreliable flow rates at the first sampling station caused by head pressure at the flow splitter. Three other storm samples were discarded because the storm events did not meet the minimum of one inch of rainfall in a 24 hour period. The remainder of the monitoring attempts failed due to high flows causing equipment failures. The portable ISCO sampler was completely overturned during one of the sampling attempts.

SWM facility maintenance needs were also a problem at Clarksburg Ridge. The TSS concentration data and field observations suggest that the storage limit for sediment at the BaySeparator may have been met (CPJ 2010). TSS concentrations for the two analyzed storms (June 2009, August 2009) were twice as high at the outlet of the BaySeparator as at the inlet. TSS concentrations were lower at the outfall of Pond C than at either of the other monitoring stations, indicating that the sand filter portion of the treatment train reduced TSS concentrations. TSS concentrations were below the detectable limit of 1 mg/L suggesting very high removal performance.

In response to the 2009 sampling results and report, the monitoring consultant was instructed to delay further sampling attempts until the structure was inspected and maintained by DEP. The maintenance was scheduled for winter 2009, and the BaySeparator was inspected and maintenance was performed on April 7, 2010. DEP and DPS met with the engineer and monitoring consultant in May 2010 to resolve future monitoring difficulties.

Briarcliff Meadows

Briarcliff Meadows consists of a northern and southern tract, approximately 11.56 and 9.41 acres in size, respectively. Development activities at this former nursery began in July 2006. Home construction of ten single-family homes on the North portion and nine single-family homes on the South portion was completed in November 2007. The post construction monitoring permit was issued in March 2009 initiating data collection on groundwater levels and chemistry and pollutant removal efficiency sampling at two SWM BMPs. Results from the monitoring of the surface sand filter on the north portion of the property are to be directly compared to the monitoring results produced from the biofilter on the southern portion.
Two storms were captured in 2009 at the Briarcliff Meadows sand filter and biofilter. Although monitoring was attempted on 8/29/2009 and 11/12-11/13/2009, sampling and processing errors make the data collected non-valid. The storm event monitored in November 2009 was not captured in its entirety at both structures. Failure to capture a storm event in its entirety produces misleading pollutant removal efficiency results. Also, the two structures cannot be compared, as required in the terms of the post construction monitoring permit.

Incorrect detection limits were used for several pollutant parameters for both sampling events. Furthermore, the sample holding time was exceeded for the storm captured in August 2009. Table 3.13 presents a comparison of the detection limits and holding time limit requirements for the monitored pollutants versus what actually occurred.

There were several instances of “non-detectable” results for TSS during both monitoring events. Incorrect detection limits were used with detection limits reported in the 4 or 5 mg/L range, and 10 mg/L during one analysis. A detection limit of 1 mg/L was required. With the higher detection limits, pollutant concentrations below the limit were not identified in the sampling.

As a result of the TSS detection limit being too coarse/too high, any result reported as below the detection limit is not representative and thereby unusable (e.g., if the detection limit used was correct and low enough, TSS may have been detected and results produced). This year’s sampling does not meet the requirements of the Final Water Quality Plan and post construction monitoring permit for Briarcliff Meadows. Monitoring at Briarcliff Meadows will continue until monitoring requirements have been satisfied.

Table 3.13. Parameters, Detection Limits, and Holding Time Limit Requirements for Briarcliff Meadows. Discrepancies are highlighted and in bold.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Required Detection Limit</th>
<th>Det, Limit Used for Two Sampling Events</th>
<th>Maximum Holding Time Allowed**</th>
<th>Holding Time Prior to Lab Analysis during 8/2009 Sampling Event***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate as N*</td>
<td>0.05 mg/L</td>
<td>0.1 mg/L</td>
<td>48 hours</td>
<td>120 hours</td>
</tr>
<tr>
<td>Nitrite as N*</td>
<td>0.05 mg/L</td>
<td>0.05 mg/L</td>
<td>48 hours</td>
<td>120 hours</td>
</tr>
<tr>
<td>Total Kjeldhal Nitrogen</td>
<td>0.08 mg/L</td>
<td>0.2 mg/L</td>
<td>28 days</td>
<td>>2 months</td>
</tr>
<tr>
<td>Orthophosphorus</td>
<td>0.05 mg/L</td>
<td>0.05 mg/L</td>
<td>48 hours</td>
<td>120 hours</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>0.05 mg/L</td>
<td>0.05 mg/L</td>
<td>28 days</td>
<td>13 days</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>1.0 mg/L</td>
<td>4 mg/L – 10 mg/L</td>
<td>7 days</td>
<td>7 days</td>
</tr>
</tbody>
</table>

* Nitrate as N and Nitrite as N were analyzed together (Nitrate-Nitrite as N) during the November 2009 sampling event at a detection limit of 0.15 mg/L. Results cannot be directly compared to previous storm event.

** Holding times from WSSC Laboratory Services Group Quality Assurance Manual, February 2008; appropriate preservative and temperature assumed.

*** The storm event sampled in August fell on a Saturday (8/29/2009). The samples were not received by the lab for analysis until 9/2/2009. The lab then did the testing for the most time-sensitive parameters on 9/3/2009. TKN was accidentally excluded from analysis by the lab and was added on later.
Summerfield Crossing

Summerfield Crossing is a development of 255 mixed residential units consisting of single-family and townhomes. A reach of Little Seneca Creek and associated tributaries and wetlands transect the site. The area was agricultural and consisted of farm fields and open land prior to development. Summerfield Crossing was developed in three phases, all of which broke ground in September 2004. Build out occurred in December 2006 for Phases 1 and 2 and in June 2009 for Phase 3. A post construction monitoring bond was issued January 2010. Monitoring of two SWM BMP treatment areas began just prior to the bond being posted (in December 2009), but the monitored facilities were online and functioning.

SWM Pond A consists of a treatment train of vegetated swales, a BaySeparator, parallel sand filters, and a dry pond. Stormwater enters a vegetated forebay/swale and then splits “evenly” to two sandfilters. Following quality treatment in the sand filters, stormflow discharges into the dry pond before being discharged to Little Seneca Creek by way of a concrete rip-rap channel. According to the design plans, the elevations are close to equal (only 1/10 of an inch off in elevation) so stormwater is expected to be shunted evenly if the structure is functioning as designed. Samplers are located at: 1) the inlet to the sand filters prior to the flow splitter, 2) at the outlet of the parallel sand filters, and 3) at the outfall of the dry pond.

A Stormfilter (identified as storm filter 1) is being monitored on a separate portion of the property. It is an underground facility beneath a playground and common area. It has a drainage area of 3.5 acres (1.75 acres imperviousness) and stormwater is treated by a BaySeparator before entering the filter. Samplers were deployed at the inlet and outlet pipes of the Stormfilter.

A storm event was captured on December 9, 2009 for the Pond A treatment train and on December 13, 2009 for Stormfilter 1. Incorrect and coarser laboratory detection limits were used for the monitoring conducted to date here (Table 3.14).

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Required Detection Limit</th>
<th>Det. Limit Reported According to Lab Records in Report Appendices</th>
<th>Det. Limit Reported According to In-text Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate</td>
<td>0.05 mg/L</td>
<td>0.1 mg/L</td>
<td>0.06 mg/L</td>
</tr>
<tr>
<td>Nitrite</td>
<td>0.02 mg/L</td>
<td>0.05 mg/L</td>
<td>0.023 mg/L</td>
</tr>
<tr>
<td>Total Kjeldhal Nitrogen (TKN)</td>
<td>0.2 mg/L</td>
<td>0.2 mg/L</td>
<td>0.10 mg/L</td>
</tr>
<tr>
<td>Orthophosphorus</td>
<td>0.01 mg/L</td>
<td>0.05 mg/L</td>
<td>0.017 mg/L</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>0.05 mg/L</td>
<td>0.05 mg/L</td>
<td>0.021 mg/L</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>1.0 mg/L</td>
<td>4.5 & 7 mg/L</td>
<td>1 mg/L</td>
</tr>
<tr>
<td>Total Cadmium</td>
<td>0.0006 mg/L</td>
<td>0.002 mg/L</td>
<td>0.0004 mg/L</td>
</tr>
<tr>
<td>Total Copper</td>
<td>0.0012 mg/L</td>
<td>0.005 mg/L</td>
<td>0.001 mg/L</td>
</tr>
<tr>
<td>Total Lead</td>
<td>0.0004 mg/L</td>
<td>0.002 & 0.01 mg/L</td>
<td>0.003 mg/L</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Total Zinc</td>
<td>0.0034 mg/L</td>
<td>0.005 mg/L</td>
<td>0.002 mg/L</td>
</tr>
</tbody>
</table>

Parkside

Parkside is an approximately 10.96-acre site developed for residential use. 4.1 acres drain to the Clarksburg SPA (and biological monitoring station LSLS103C), while the remainder of the drainage goes to Little Bennett Creek. Post construction monitoring consisted of photo documentation of bioretention areas and a temperature study at the dual sand filter treatment train.

Continuous temperature monitoring occurred from June through September 2009. Four loggers were deployed to monitor stormwater as it enters Sandfilter 1 (2 locations), enters Sandfilter 2 (1 location), and at the outfall of Sand Filter 2. The purpose of the monitoring is to evaluate if warm stormwater runoff is cooled as it is treated. The monitoring report from the consultant was not ready in time for inclusion in this annual report.

3.5 Discussion of SPA BMP Effectiveness

3.5.1 Completed Monitoring Projects in 2009

Monitoring is completed at 21 SPA projects and ongoing at 22. The majority of ongoing monitoring projects continue to be in the during construction phase, although many of these projects are approaching build out. Four projects were collecting data on post construction conditions in 2008; seven were collecting these data in 2009. One project fulfilled monitoring requirements in 2009: Hunt Lion’s Den in the Upper Paint Branch SPA.

Completed projects allow the evaluation of onsite conditions throughout the development process. Hunt Lion’s Den drains to Paint Branch Right Fork (PBRF). A reach of PBRF was monitored for temperature, embeddedness, and cross-sections. Groundwater elevations were also monitored throughout the development process to assess whether stream baseflow was being maintained and wetlands were being protected. Temperature and cross-section monitoring results were inconclusive. The temperature dataset was limited and natural versus development-related influences could not be discerned for the cross-sectional monitoring. There was no impact observed to stream embeddedness although, mean embeddedness was observed to be highest at the two monitoring stations during the first year of construction. It is possible that the mass grading and conversion of pasture and agricultural practices to residential land use may account for this initial increase, and embeddedness levels decreased following that period. There were no discernable development-related impacts to groundwater levels at two monitored wells, although a slight declining trend was observed in a shallow well located in a wetland.

3.5.2 S&EC Monitoring During Construction

Monitoring of TSS continued in 2009. Some projects still have requirements to monitor TSS using grab sampling. A total of 121 TSS grab samples have been collected through 2009. The overall removal efficiency is 73.4%, an improvement of 2.8% from 2008. Grab sampling of TSS at S&EC structures continued to demonstrate that higher outfall concentrations are observed late in the construction process where less exposed earth is present on a site. Under these conditions, more sediment may be leaving the structure than entering in stormwater due to the resuspension of fine clays and silts already accumulated in the structure control basin. Additionally, the concentration of pollutants in runoff (i.e. how dirty it is) can influence the actual pollutant removal percentages. If the concentration is near an irreducible level, such that it is near or below a detectable limit, a low or negative removal percentage can be recorded (Schueler 2000). These findings have prompted DPS and DEP to push conversion from S&EC to SWM BMPs in developments when the disturbance to the majority of the drainage area to the structure has ceased and any residual construction and sediment control can be attained by individual “on lot” controls.

Automated flow-weighted composite sampling, which better represents pollutant concentrations over the duration of a storm event and the pollutant loadings delivered to receiving streams, showed that TSS was being reduced at the four S&EC basins monitored in Clarksburg. The Clarksburg Town Center and Stringtown Road Extension monitoring basins had an overall average TSS loading reduction of 87% and 94%, respectively. The high TSS removal efficiencies were attributed to redundancy measures (dual cell basins) and over-sized basins.

Monitoring was ongoing at the two other basins. Gateway Commons had an average TSS removal of 90%, lower than the nearly 100% efficiency reported in 2008. There is evidence that the first cell is declining in performance and in need of maintenance, causing an overall decline in performance. Inspection and maintenance is likely needed at the dewatering device of the first cell. Despite experiencing a decline in performance, TSS removal efficiency remains above 70%, and the redundancy measure of two cells continues to reduce TSS loadings to protect the receiving streams. Only two storms were captured at Greenway Village using proper monitoring techniques. Pollutant removal efficiency was for the storms monitored on 11/15/2007 and 10/27/2009 at 71.6% and 43.8%, respectively.

There are very little data and scientific literature available for evaluating the efficiency of S&EC basins at capturing total suspended solids. More research is needed to reveal factors that cause S&EC or SWM structures to function well or poorly.
Several variables have been identified as sources of disparity (CWP 2007), including:

- the amount and type of sediment disturbing activities occurring at the site at the time of sampling;
- the number of storms sampled and the characteristics of each (i.e. rainfall and accumulation, duration, flow rate, particle size of each);
- the monitoring technique employed;
- the internal geometry and storage volume and design features of the structure;
- the size and land use of the contributing catchment.

An additional sediment loading study was conducted at Clarksburg Town Center in 2009 beyond the requirements of the Final Water Quality Plan. Monitoring occurred late in the development process and does not represent early stage construction conditions, when the largest amounts of sediment are expected to be generated.

3.5.3 SWM BMP Monitoring (Post Construction)

An increasing number of projects are beginning to collect SWM BMP Monitoring data. Projects are early in the process and the dataset is further limited by sampling challenges. Monitoring consultants are required to submit quarterly progress reports detailing whether monitoring is on schedule and what problems have been encountered. DEP and DPS have also continued to promote meetings and planning prior to the commencement of monitoring. Establishment of a separate post construction monitoring bond is an important measure in keeping developers, and their hired monitoring consultants, accountable and ensuring that monitoring requirements are being fulfilled.

3.5.4 Conclusions

DEP and DPS continue to strive towards improving consultant success at collecting automated flow-weighted composite samples at S&EC and SWM structures and to help minimize impacts through the development process Generating these data are important for providing a long term assessment of stream conditions throughout the development process.

Evaluating BMP efficiency by presenting percent removal is one important assessment tool, but efficiency alone does not provide the entire picture to BMP effectiveness at protecting the stream resource. Measuring changes to stream geometry, habitat, and chemistry (Section 4), and ultimately the biological community (Section 5) must also be examined for success in protecting water quality.

With these factors in mind, great care should be taken, not just when examining the County’s results alone, but when trying to make comparisons between results from the same types of BMPs employed locally and nationally.
With the exception of the Clarksburg SPA, all the other SPAs were fairly well-developed prior to being adopted as a SPA, making it difficult to separate the effects of additional development from those areas already developed. Ultimately, a conclusive evaluation of the effects of development cannot be completed until the watershed is built out or almost built out.

The evolution of Clarksburg from an undeveloped, rural environment to a dense suburban/urban environment makes it a perfect test site to evaluate the ability of structural BMPs to protect water quality.
4. Stream Characteristics

Beginning in 2007, information on a comprehensive ecological monitoring and assessment approach has been presented that links changes in land use, stream hydrology, stream morphology, and habitat to changes in biological stream conditions. This monitoring is being done through a partnership of Government agencies and universities that have concentrated their resources on the Clarksburg Master Plan SPA.

Clarksburg was selected by the partnership because:

- of the ability to evaluate the effects of development on an undeveloped landscape;
- the level of development activity is greatest;
- the suite of representative BMPs to monitor is the most diverse;
- long term monitoring resources enable the most intensive and effective monitoring to evaluate changes in hydrology and morphology.

Results from this effort will be used to evaluate which BMP types are the most and least effective and to evaluate if engineered solutions alone can minimize the impacts of development to stream systems.

As described in Section 1.2.2, a Before, After, Control, Impact design, or paired catchment (watershed) design (Farahmand et al. 2007), is used in the Clarksburg Study Area. Additional maps are provided in the Technical Appendix. The following subsections present information on hydrology and geomorphology conditions in 2009.

4.1 Hydrology

4.1.1 Background

Conversion of watersheds to urban areas has been shown to have major affects on stream hydrology as a result of vegetation removal, stream channel modification, and increases in impervious area. These alterations can lead to increased stream flashiness and hydrologic responses: faster onset and decay of storm flow hydrographs, reduction in base flow rates, and higher and earlier peak discharges (Bledsoe 2001; Paul and Meyer 2001; CWP 2003; Goonetilleka et al. 2005; Konrad and Booth 2005; Walsh et al. 2005; Farahmand et al. 2007). The effects of these hydrologic changes are most severe in headwater streams (Nehrke and Roesner 2001). This section builds on the work reported in the 2007 and 2008 SPA Annual Reports.
4.1.2 Hydrologic Data Analysis and Interpretation

The rain gages at Black Hill Regional Park and Little Bennett Regional Park have produced records of rainfall totals that allow the calculation of a number of useful statistics including storm durations, storm mean intensity, and storm peak intensity.

Stream flow gages continue to provide data that allows the calculation of instantaneous peak discharge and daily mean discharge. Information on the five gages is presented in Table 4.1.

Table 4.1. Descriptions of the Five Stream Gages in the Clarksburg Study Area.

<table>
<thead>
<tr>
<th>Gage Id. Number</th>
<th>Name</th>
<th>Date Started</th>
<th>DA (mi²)</th>
<th>DA (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01644371</td>
<td>Little Seneca Creek Tributary Near Clarksburg, MD</td>
<td>5/2004</td>
<td>0.43</td>
<td>275.2</td>
</tr>
<tr>
<td>01643395</td>
<td>Sopers Branch at Hyattstown, MD</td>
<td>2/2004</td>
<td>1.17</td>
<td>748.8</td>
</tr>
<tr>
<td>01644375</td>
<td>Little Seneca Creek Tributary Near Germantown, MD</td>
<td>6/2004</td>
<td>1.35</td>
<td>864</td>
</tr>
<tr>
<td>01644372</td>
<td>Little Seneca Creek Tributary at Brink, MD</td>
<td>6/2004</td>
<td>0.37</td>
<td>236.8</td>
</tr>
<tr>
<td>01644380</td>
<td>Cabin Branch Near Boyds, MD</td>
<td>6/2004</td>
<td>0.79</td>
<td>505.6</td>
</tr>
</tbody>
</table>

Precipitation, Infiltration, and Annual Flows

Average annual precipitation is about 42 inches in the Baltimore-Washington area (NWS 2008). Average monthly precipitation varies throughout the year and spring and summer thunderstorms can cause significant variations in precipitation depending on location (Doheny et al. 2006; James 1986).

Annual runoff for the two USGS gages (01644371, 01643395) was used to determine how much average annual precipitation infiltrates into the groundwater or is released into the atmosphere through **evapotranspiration** within the drainage areas of the gages. Data were obtained from the online **Water Year Reports** published by the USGS, Baltimore Office (Doheny 2009, personal communication) for water years 2005, 2006, 2007, 2008 and 2009. A copy of the 2009 USGS Water Data Report for the two aforementioned stream gages is located in the Technical Appendix.

The Sopers Branch had about 68.5% of the average annual precipitation either infiltrating into the ground or lost to evapotranspiration during water year 2009 (Fig. 4.1). The tributary of Little Seneca Creek had about 52.1% of the average annual precipitation either infiltrating into the ground or lost to evapotranspiration during water year 2009.

On average, the overall amount of precipitation infiltrating into the ground or lost via evapotranspiration has steadily declined in the Newcut Road Neighborhood Tributary.
(Fig. 4.1; blue line) as development continues while remaining fairly constant in the Sopers Branch (Fig. 4.1, red line).

Figure 4.1. Percentage of Average Annual Precipitation Infiltrating into the Ground or Removed via Evapotranspiration.

The overall amount of precipitation that directly entered the Newcut Road Neighborhood Tributary to Little Seneca Creek increased over this same time period (Fig. 4.2, blue line). Annual flows were adjusted for the differing drainage areas of the two gages to normalize the annual runoff amounts and to allow for comparison.

About twice as much rainfall is running directly into the Newcut Road Neighborhood Tributary stream as compared to the control stream, Sopers Branch, for the 2005, 2006, 2007, 2008, and 2009 water years. This is due to the changes in imperviousness that have occurred in the drainage area as a result of development.
Figure 4.2. Annual Flow (Adjusted for Drainage Area) from 2005 through 2009.

Stream Flashiness

Stream flashiness refers to the stream flow response to storms. Conversion of watersheds to urban areas can lead to flashier hydrologic responses (Farahmand et al. 2007) with water levels that rise, peak, and fall very rapidly in response to storm precipitation (Doheny et al. 2006). An index was used in the 2007 SPA Annual Report to compare the flashiness of the Sopers Branch and Newcut Road Neighborhood Tributary streams (Doheny et. al. 2006). The index is described as the ratio between the instantaneous peak discharge (highest stream flow [IPD]) to the daily mean discharge (average stream flow [DMD]) that occurs during a storm event. When the discharge is divided by the size of the drainage area (acres), the ratios are normalized and the ratios from different streams can be compared. Daily mean discharge and instantaneous peak discharges for storm events from 2004 through 2009 are provided in the Technical Appendix.

During the construction period, the Newcut Road drainage was, on average, flashier than the Sopers Branch drainage. In 2009, the Newcut Road Neighborhood Tributary Flashiness Index was higher when storms had higher average storm intensities or higher maximum storm intensities (Technical Appendix). Storms measured in 2009 that resulted in similar Flashiness Indices between the Sopers Branch and Newcut Road Neighborhood Tributary had less than one inch of rain, low average storm intensities, and low maximum storm intensities. The Newcut Road Neighborhood Tributary had quicker peak runoff events with storms with greater than one inch of rain in a 24 hour period (Fig. 4.3).
Stream bed and bank erosion would be higher during these events. A table of daily mean discharge and instantaneous peak discharges for storm events is provided in the Technical Appendix.

Figure 4.3. Comparison of Stream Response: July 23, 2009 1.55" storm.

Time of Concentration

Time of concentration is defined as the difference in time between the start of rainfall and when discharge begins to increase at the gaging station (Doheny et al. 2006). Changes in the time of concentration of a watershed can be useful in understanding stream response to increases in imperviousness. When the conversion process to SWM BMPs has been completed, time of concentration will be evaluated to determine if the Newcut Road tributary’s response to rainfall has changed compared to the control station.

4.2 Changes in Stream Geomorphology

Changes in the storm runoff amounts, directly and immediately reaching the stream, and the flashiness of the stream’s response to storms can cause changes in stream geomorphology.
4.2.1 Study Design and Data Collection

Geomorphic surveys are conducted in the three test areas (Fig 4.4): two in the Newcut Road Neighborhood (Little Seneca 104 tributary) (Fig. 4.5.a), and one in the Cabin Branch Neighborhood as well as in the undeveloped control area in Little Bennett Regional Park (Soper’s Branch) (Fig. 4.5.b) and the developed control in the Germantown area (Crystal Rock) (Fig. 4.5.c). Multiple surveys were completed in all areas to document the temporal change in stream channel morphology. Survey information includes longitudinal profiles, cross sections, bed composition (pebble counts), and sinuosity.

Surveys are located within similar habitat sections of the study streams. The first habitat section is a steeply-graded, straight channel (low sinuosity index) consisting mostly of riffle habitat. As sections were surveyed further downstream (areas two, three, and four), the slope of the stream slightly decreases, sinuosity increases, and runs and pools become more prevalent.
Figure 4.5. Little Seneca 104 tributary (Newcut Road neighborhood) geomorphology survey test areas (A), Little Bennett Creek survey control areas (B), and Germantown negative control survey areas (C).
4.2.2 Data Analysis and interpretation

Preliminary results are presented in the Technical Appendix for cross sections established in the most downstream sections within the Newcut Road Neighborhood test area (area 4), the Little Bennett control (Sopers Branch area 4), and the Germantown control (area 2). All cross sections used in this comparison were measured in riffle/run stream areas. Riffle/run areas serve as grade control for the stream.

On average, cross sections from the Newcut Road Neighborhood area experienced channel aggradation corresponding to the most active years of construction (2004, 2005 and 2006), and then channel degradation and some widening in 2007 and 2009 as this area of the Newcut Road Neighborhood neared final elevations and stabilization (Fig. 4.6). On the other hand, the Little Bennett Regional Park (Fig. 4.7) and Germantown Crystal Rock cross sections show little yearly change.

Changes in cross section are most obvious in the lower half of each profile, corresponding to levels that frequent storms would impact. Surface hydrology analysis has shown that the amounts of annual runoff infiltrating the ground has decreased, annual stream runoff has increased and that the Newcut Road Neighborhood stream had a more rapid response to storms. These changes to surface hydrology would cause the stream to move more sands and gravels in the channel and aggrade (Paul and Meyer 2001). The S&EC BMPs on the development sites were functioning as designed and maintained. However, even the best maintained and functioning S&EC BMP are not 100% effective in removing fine clays and silts.

Evaluation of sinuosity over time documents a difference between the test and control stations. Sinuosity is the ratio between the length of the stream and the corresponding length of the stream valley. A ratio of 1:1 would indicate a very straight and often channelized stream. Sinuosity indices for the Newcut Road tributary reveal the stream has straightened over time (ratios went from 1.4 to 1.0 in just four years (Table 4.2). The sinuosity of the Sopers Branch channel has remained fairly similar. This would be consistent with the increased annual runoff of the Newcut Road Neighborhood stream.

Changes in stream morphology would largely be a result of the changes reported on stream hydrology. There are many comparison studies yet to be done between the test and control areas to evaluate the effectiveness of stormwater BMPs. Results presented herein are preliminary as the S&EC control devices have not been converted to SWM structures. However, from the preliminary results, the construction phase of development has impacted the 104 tributary channel morphology due to channel straightening, downcutting, and enlargement. Final conclusions will be made once the development process has been completed in the test areas and when the S&EC BMPs have been converted to final SWM BMPs.
Figure 4.6. Representative cross sections from Newcut Road Neighborhood, Little Seneca 104 Tributary test location, Area 4. Cross sections are both measured in Riffle/run features.
Figure 4.7. Representative cross sections from Little Bennett Creek, Sopers Branch control location, Area 4. Cross sections both measured in Riffle/run features.
Table 4.2. Sinuosity indices and survey information for Newcut Road Little Seneca 104 tributary test area, Little Bennett Soper’s Branch control area, and Germantown Crystal Rock control area. Data are shown for furthest downstream areas within each test and control.

<table>
<thead>
<tr>
<th>Sinuosity</th>
<th>Year</th>
<th>'03</th>
<th>'04</th>
<th>'05</th>
<th>'06</th>
<th>'07</th>
<th>'09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSLS104 A4</td>
<td></td>
<td>1.4</td>
<td>1.4</td>
<td>1.3</td>
<td>1.0</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>LBSB201 A4</td>
<td></td>
<td>1.1</td>
<td>1.1</td>
<td>1.0</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Longitudinal Slope (%)</th>
<th>Year</th>
<th>'03</th>
<th>'04</th>
<th>'05</th>
<th>'06</th>
<th>'07</th>
<th>'09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSLS104 A4</td>
<td></td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.4</td>
<td>1.2</td>
</tr>
<tr>
<td>LBSB201 A4</td>
<td></td>
<td>1.1</td>
<td>0.9</td>
<td>1.5</td>
<td>1.4</td>
<td>1.4</td>
<td>1.5</td>
</tr>
</tbody>
</table>

CLARKSBURG- Bankfull Channel Particle Size (D50) at LSLS104 and LBSB201

<table>
<thead>
<tr>
<th>D50 (mm)</th>
<th>Particle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3 Habitat

A Rapid Habitat Assessment (RHAB) is used during spring and summer sampling at all stream stations monitored in the county. An individual score is selected within categories of optimal, sub-optimal, marginal, and poor and a total score (out of 200) is generated for the station. A summary of the RHAB methods used by DEP is provided in the Technical Appendix (Section TA-5.1).

There is no clear trend in the three SPAs and no substantial difference was found between the test and control areas.

4.4 Summary

4.4.1 Hydrology

The greater the impervious surfaces that cover a watershed, the smaller the amount of precipitation that infiltrates into the groundwater system and the more precipitation directly runs off into streams. This is through the grading and compaction activities that currently occur as a result of development. Naturally pervious soils and a diffuse infiltration system are altered and/or lost through the cut and fill requirements currently being followed to develop a property.
On average, the overall amount of precipitation infiltrating into the ground or lost via evapotranspiration has steadily declined in the Newcut Road Neighborhood Tributary while remaining fairly constant in the Sopers Branch control. The overall amount of precipitation that directly entered the Newcut Road Neighborhood Tributary test area also increased over this same time period as compared to the Sopers Branch.

4.4.2 Habitat

The data that have been collected through the Rapid Habitat Assessment do not show major differences in habitats of streams that lie within watersheds with land development projects versus those that are in watersheds with very little or no land development activities. The assessment may be too coarse to detect differences; the geomorphic surveys provide a quantitative method to measure differences between control and test areas.
5. Biological Stream Monitoring

Stream biological communities respond to the cumulative and multiple stressors that occur in the stream. Careful monitoring and comparison of streams not impacted by new development and streams with ongoing development can isolate stressors caused by natural conditions (drought, flooding) from those caused by development (mass grading, sedimentation, increased impervious surface). Development-related landscape changes can alter stream hydrology and channel shape. SPA S&E and SWM BMPs attempt to minimize these impacts.

5.1 Background

Minimization of the cumulative effects caused by development and land use change to streams is made through careful land use planning, protection of sensitive environmental features, and development practices that maintain natural hydrological and channel processes.

Biological monitoring evaluates stream condition and records changes in the stream community over time. The U.S. EPA (1990) recommends using two or more indicator groups to provide a more realistic evaluation of system biological integrity. The monitoring of fish and benthic macroinvertebrate communities is used nationally and regionally to measure the overall health of a stream, as documented in the 2008 report. Both biological communities provide information on short-term and long-term impacts.

Fish and benthic macroinvertebrate populations display a range of tolerances within each community and these populations will survive or die in relation to the degree of cumulative impacts in the stream. Adults may survive initially, but the cumulative impacts can affect reproductive success to the point where there are not enough viable offspring produced to maintain the population. For examples of tolerance values and functional feeding groups, see the Technical Appendix. DEP developed an index to compare the stream community (fish and benthic macroinvertebrates) to those found in the least impaired streams located in the County and surrounding areas.

Measures (metrics) of each biological community are assembled to form an Index of Biological Integrity (IBI). The metrics used for benthic macroinvertebrate and fish IBIs can be found in the Technical Appendix. Metrics are selected that respond in a predictable way to increasing degrees of cumulative impacts. Metrics are scored in comparison to the least impacted streams in the region. The final IBI creates an index that compares any stream against conditions found in these least impacted streams. Streams are rated as excellent, good, fair, or poor.

Benthic macroinvertebrates tend to be stronger indicators of stream health in headwater areas with short term disturbance, where impacts to the stream are much more concentrated in time and space. Fish, with longer life-spans and increased mobility, give stream health information on a larger scale both spatially and temporally. Combined in an
average, the benthic and fish metrics give a very inclusive, holistic evaluation of a stream’s overall biological condition.

DEP has been performing county-wide biological monitoring since 1994. DEP began stream monitoring within three SPAs, Clarksburg, Piney Branch, and Upper Paint Branch in 1995 and within the newly-designated Upper Rock Creek SPA in 2004. Stream monitoring includes biological sampling of benthic macroinvertebrate and fish, as well as amphibian and reptile populations. Stream monitoring also includes habitat assessment, stream channel measurements, and water quality readings (dissolved oxygen, temperature, pH, and conductivity), which were discussed in Section 4. For a table of available stream monitoring data and a discussion of stream monitoring protocols, see the Technical Appendix.

A Stream Salamander IBI has been developed for Maryland and has undergone several validations (Southerland et al. 2004; Southerland and Franks 2008). Stream salamanders spend their entire lives instream or closely associated with the stream channel. Because of their longevity, small home ranges, relatively stable populations, abundance and ubiquity, salamanders have been identified as promising indicators of water quality. Furthermore, they replace fish as top predators in small, headwater streams (Jung et al. 2004; Southerland and Stranko 2006). DEP is examining the use of stream salamanders as indicators of water quality in small streams (less than 300 acres drainage area) to complement the benthic macroinvertebrate IBI scoring results.

Presently, there are 57 SPA stream monitoring stations throughout the four SPAs: 27 in Clarksburg; 14 in Upper Paint Branch; 10 in Piney Branch and six in the Upper Rock Creek SPA. Because of staff constraints, not all 57 stations are able to be monitored each year. 48 stations were monitored in 2009. For maps showing the location of all 2009 active SPA biological monitoring stations in the four SPAs, see the Technical Appendix.

5.2 Stream Condition Comparison

This section compares the stream conditions (the average of the benthic and fish IBI scores) at each SPA station over time. As in previous reports, an averaged stream condition map representing pre-development year(s) is compared to an averaged stream condition map displaying during and post-development year(s) for each SPA. In 2009, percent scores were added to the maps to give a better sense of where stations are within the categories of excellent, good, fair, or poor. Maps showing the year to year stream condition change from 2006 to 2009 can be found in the Technical Appendix. Additionally, maps showing the year to year change (2006-2009) in Benthic IBI narratives for each SPA can be found in the Technical Appendix.

Current stream condition trend changes in the four SPAs are presented and discussed. These changes are from cumulative impacts – not always from impacts directly related to SPA development. Changes to SPA stream conditions are presented along with possible stressors related to the change. Section 5.3 presents changes in stream conditions associated with SPA development impacts.
According to Morgan and Cushman (2005), small (1st to 3rd order) headwater streams are particularly at risk from development impacts. Altered flow regimes from urbanization can affect fish assemblage structure and biodiversity by re-shaping the streams physical habitat on too short a time scale (years to decades) to allow populations to adjust. Miltner et al. (2003) suggested that poorly regulated construction practices constitute the first step toward declining stream health in suburbanizing landscapes.

5.2.1 Clarksburg SPA

Clarksburg SPA stream conditions were predominantly good to excellent before development occurred (Fig. 5.1). Currently, stream conditions in the Clarksburg Town Center (mostly above Stringtown Road, LSL5103C), an eastern tributary of Ten Mile Creek (mostly east of I-270, LSTM206), and a small developing area of the Catawba Manor development have dropped into the fair category (Fig. 5.2). The most upstream active site on the Town Center Tributary (LSL5103C, located just downstream of Stringtown Road) that is closest in proximity to the Town Center development also declined from its pre-development conditions and is ranked fair.
The majority of new development in the Town Center and Newcut Road Neighborhoods began in 2006, resulting in degradation of stream conditions as areas underwent intensive widespread construction. Development activities have progressed in phases from east to west, with more intense construction in 2006 and 2007 and corresponding biological impairment. In 2008 and 2009, there was less intense development due to the economic downturn, which may have allowed less active construction sites to stabilize and for completed developments to convert to SWM. A few stream conditions during this time improved their average ratings, perhaps as a result of site stabilization and SWM conversion.

The farthest downstream Town Center Tributary site, located below Foreman Boulevard (LSLS103B) and near the confluence with Little Seneca Creek, improved from *fair* in 2007 to *good* in 2008, and remains *good* in 2009. This area drains portions of the Newcut Road and Town Center developments, Highlands of Clarksburg development, and some older pre-SPA large-lot neighborhoods. The Highlands of Clarksburg development has completed construction and is generally stable, although monitoring of post construction conditions has not yet commenced. LSLS104 drains a developing area of the Newcut Road development, and was *fair* in 2007 and 2008, but has improved to *good* in 2009.
Stream conditions at GSWB201 also improved from *fair* to *good* from 2007 to 2008 and have remained *good* in 2009. The SWM structures received as-built approval in June 2007, following site stabilization and completion of development. Development of this formerly agricultural site consisted of construction of a cemetery, mausoleum, small chapel and maintenance facilities. The majority of the cemetery is open space. BMP monitoring indicated that changes to the stream channel occurred during construction activities but that the channel was relatively stable from 2007 to 2009 (Section 3.2.7).

One Brown trout—an indicator of good water quality—was found within the Ten Mile Creek monitoring stations in 2009. It is not known whether this trout is naturally occurring, but no signs of fish stocking, such as fin erosion, were observed.

The eastern headwater area of Ten Mile Creek remains in *fair* condition. Current imperviousness is 12%. This area partially receives runoff from some of the Clarksburg Detention Center, the new Stringtown Road widening west of Route 355, some commercial development in the I-270 Gateway Center area, portions of the Town Center development, a part of Gateway Commons, as well as runoff from portions of I-270. An investigation was made into possible reasons for the decline (as reported in the 2006 SPA Annual Report) and high conductivity readings were found throughout the drainage area to the station. No specific cause for the high conductivity readings could be identified, but the sensitivity of Ten Mile Creek to impacts is apparent.

5.2.2 Paint Branch SPA

Paint Branch stream conditions were also predominantly *good* to *excellent* before the development period (Fig. 5.3). Current stream conditions in the Right Fork tributaries have dropped from *excellent* to *good* (Fig. 5.4). Most of the SPA development within Paint Branch has occurred in the Right Fork of the Upper Paint Branch.

One station in the upper Left Fork (PBLF202) went from *fair* in 2007 to *good* in 2008, and remains *good* in 2009 (Fig. 5.4). The drainage area to PBLF202 is approximately 466 acres. Snider's Estates, an 8 acre residential subdivision, is the only new SPA development in this area. SWM at Snider’s Estates has been functional and online since December 2004. It is unclear whether a correlation exists between SPA development activities and the stream condition in this watershed since the amount of new SPA development is so small and the surrounding development was completed almost 20 to 30 years ago. However, it appears the small scale of development and the quick conversion likely helped mitigate any new impacts to stream conditions.
Presently, one station in the headwaters of the Good Hope Tributary, PBGH108, is in fair condition, with all other areas in good condition. The headwaters of the Good Hope (in the vicinity of Peachwood Park) have been in fair condition since the County monitoring began in 1994 (Fig. 5.3). The consistent fair conditions at PBGH108 are likely not related to SPA development.

The Good Hope relies on clean, cool waters as spawning grounds for its naturally-reproducing brown trout population. In 2009, four adult brown trout, one of the most sensitive fish species in Montgomery County to stream degradation and water quality impairment, were found in the Upper Paint Branch SPA. Further discussion of Paint Branch Brown Trout is located in the Technical Appendix. Both the Upper Rock Creek SPA and Paint Branch SPA have an 8% impervious surface cap.
5.2.3. Piney Branch SPA

The stream conditions in the upper headwaters area of the Piney Branch SPA went from predominantly fair before development (Fig. 5.5) to fair and poor (Fig. 5.6). New development occurred during this time. 2009 stream conditions remained in the same categories since 2008.

Two stations (WBPB201 and WBPB202) are in close proximity to each other and remain in fair condition in 2009 after improving in 2008 from a poor condition. The stream condition at the station downstream of these two stations, WBPB203A, also remains unchanged. WBPB202, the station upstream of WBPB203A, is in a portion of the Piney Branch within the older Piney Glen Village and Willows of Potomac developments. These developments started before the SPA program began.

The upper station (WBPB201) is also partially within these older developments. In addition, it receives flow from the Gudelsky SWM pond and areas of the Traville development. WBPB102, which drains a major portion of Traville, remains poor, as reported in 2008.
Traville (approximately 140 acres of land) represents a consortium of projects. While construction on some properties has been completed and S&EC converted to SWM since 2000, other portions just began stabilization and conversion in 2007 and 2008. Furthermore, the majority of the individual properties are linked by a large SWM facility which was converted in April 2009. Monitoring of pollutant removal efficiency of this SWM BMP is anticipated. Stream conditions will be monitored as new SPA developments are completed and SWM controls are functioning as designed.

In the lower portion of the Piney Branch watershed, WBPB204B has improved from fair to good. Three SPA developments drain to this site, and they were built in the late 1990s and early 2000s, with SWM controls online in 2002.
Figure 5.5. Pre-development (1995-1997) Stream Conditions (average of fish and benthic % IBI scores) in the Piney Branch SPA.
Figure 5.6. Current (2006 - 2009) Stream Conditions in the Piney Branch SPA.
5.2.4 Upper Rock Creek SPA

Annual monitoring of six SPA stations began in 2004 in Upper Rock Creek. The six annually monitored SPA sites were targeted downstream of the six large developable parcels within the Upper Rock SPA. These station drainage areas are too small for fish to offer a reliable indication of water quality, so these stations are sampled for benthics only. Until 2007, no new SPA development had occurred within any of the six station drainage areas.

Phase I of the Reserve at Fair Hill began in May 2007. This project occurs above the intersection of Wickham Road and Tackbrooke Drive in Olney (Fig. 5.7). Station URNB111 (about 200 feet above this intersection in a small headwater stream) has maintained a good condition (Figs. 5.8 & 5.9). Only 40% of the current development for the Reserve at Fair Hill is within the drainage area for URNB111. Much of the suitable benthic habitat was buried by approximately one foot of fine sediment in 2008.

URRC104, below and to the east of the intersection of Muncaster Road and Willow Oak Drive, has had no SPA development, has improved from a fair stream condition category in 2008 to just barely in the good category for 2009 (Fig. 5.9). The site has received lower habitat scores due to silt deposits.

URNB110D and URNB103 both declined from excellent (2004-2007) to good (2008-2009). URNB110D has a very small portion (1.4 acres, or 1.1%) of its drainage area affected by the construction activities at of the Reserve at Fair Hill beginning in 2007 (Fig. 5.7), which could have resulted in the drop in stream condition. URNB103’s decline is most likely related to the nearby construction of the ICC.

In November 2007, contract A for the ICC began construction (which extends through the lower portion of the Upper Rock Creek SPA). In addition to the stream monitoring conducted by DEP, the State Highway Administration (SHA) is funding monitoring to determine potential impacts to the streams.
Figure 5.7. Potential (post-2007) Development impacts from Reserve at Fair Hill Project to Biological Monitoring Site URNB111 and URNB110D in Upper Rock Creek SPA.
Figure 5.8. Pre-development (2004-2007) Stream Conditions in the Upper Rock Creek SPA.
Figure 5.9. Current (2008-2009) Stream Conditions in the Upper Rock Creek SPA.
5.3 Benthic Macroinvertebrate IBI Score Comparison

In order to evaluate how effective the SPA methods, facilities, and practices utilized through the construction phase of development are in protecting the water quality of streams in the SPAs, changes in benthic IBI scores of a control set of monitoring stations and a test set of monitoring stations were compared over time before and during the development period for the Clarksburg Master Plan, Upper Paint Branch, and Piney Branch SPAs (Table 5.1).

The control set of stations had no SPA development (i.e. no new areas of disturbed land) occur in station drainage areas; the test set of stations had the majority (greater than 50%) of their drainage areas disturbed through the SPA development process.

Monitoring was done at the same time of year using the same methods. Each SPA was analyzed separately because different levels of development land use controls were in place for each SPA. Stations within each SPA are in close proximity so that the same naturally occurring events within each SPA would affect all stations. Benthic samples were collected in the spring of the year, so summer/fall drought impacts would be reflected in the results of the following year.

The rationale for concentrating on benthic macroinvertebrate scores is that most of the stations used for this comparison are small headwater streams, where benthic macroinvertebrates are expected to be a more responsive indicator group. Fish species that live in the smaller headwater streams tend to be able to survive in the available habitat and are called pioneer species. Pioneer fish species are generally more tolerant to disturbance and are able to survive a wider range of stressors than the benthic macroinvertebrate community and respond differently overall. Maps showing the year to year change (2006-2009) in Benthic IBI narratives for each SPA can be found in the Technical Appendix.

Table 5.1. Control and Test Stations.

<table>
<thead>
<tr>
<th>SPA</th>
<th>Control Station Watersheds</th>
<th>Control Stations</th>
<th>Test Station Watersheds</th>
<th>Test Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarksburg</td>
<td>Ten Mile Creek, Little Seneca Creek</td>
<td>8</td>
<td>Little Seneca Creek (primarily Newcut Road & Town Center Neighborhoods)</td>
<td>9</td>
</tr>
<tr>
<td>Piney Branch</td>
<td>Western Tributary of Piney Branch</td>
<td>1</td>
<td>Stations above Glen Hill Road</td>
<td>5</td>
</tr>
<tr>
<td>Upper Paint Branch</td>
<td>Good Hope, Gum Springs</td>
<td>4</td>
<td>Right Fork</td>
<td>6</td>
</tr>
<tr>
<td>Upper Rock Creek</td>
<td>Portions of Upper Rock Creek North Branch and mainstem of Upper Rock Creek</td>
<td>5</td>
<td>N/A (no watershed has ≥50% new SPA development as of 2009)</td>
<td>0</td>
</tr>
</tbody>
</table>
5.3.1 Clarksburg

Land use in the control area is predominately rural agricultural and topography has not changed. Many of the control stations are from Ten Mile Creek. The test set of stations had the majority of its drainage areas disturbed through the SPA development process. Most of the test stations are in the Town Center and Newcut Road Neighborhoods.

Clarksburg median benthic index scores for both the control and test stations were very similar from 1995 to 2002 (Fig. 5.10). Median scores were in the good to excellent range during this period. Construction began in the Clarksburg test areas in 2002; a record drought also occurred during 2002. The median scores diverged in 2003. The stations under construction dropped to a fair condition, while the stations without the development dropped but remained in the good benthic IBI category. From 2003 onwards, the benthic scores at streams within the test areas dropped to a fair condition and remain fair in 2009. Benthic scores in 2009 are significantly different between the test and control areas.

The Town Center tributary’s farthest downstream test station (LSLS103B) has retained a good condition in 2009, perhaps from the lull in active construction activities, completion of construction and stabilization of the Highlands of Clarksburg development, and dilution effects from being far enough downstream from the Town Center. The upstream Town Center test station (LSLS103C) remains in a fair condition in 2009. The Newcut Road Neighborhood development test station (LSLS104) has improved from a fair to good condition in 2009. Streams in the control areas improved and recovered after the 2002 drought.

The lines, or “whiskers” on the graph, which extend above and below the median points, indicate the range of scores for each group of stations during each monitoring year (25th and 75th percentiles). As the median score of the test and control stations diverge, the range of scores recorded for the two groups also diverge until they no longer overlap in 2005 (and are considered statistically significantly different). The scores of the undeveloped control and developed test stations were significantly different from 2005 to 2007. In 2008 they slightly overlap, but in 2009 they are again significantly different.

During the 2008 and 2009 sampling periods, one of the control stations was dry and was not sampled. This station is on the King Spring. Upon further investigation in 2009, staff found that a beaver dam had been built upstream of the station and had diverted the King Spring flow into a new channel. Because the King Spring continued to flow in the new channel in 2010, the station has been relocated to the new channel. Enough time should have passed to allow for colonization of the new channel by benthic macroinvertebrates.

Based on the available data, the development process during this time had a measurable impact on stream conditions in the Little Seneca Creek watershed. There is a slight recovery seen for the test group as a whole in 2008, but 2009 median benthic scores drop
again. Due to the improvement in some stations, the 25 and 75 percentiles for 2009 benthic scores are entirely above the poor category for the first time since 2005.

5.3.2 Piney Branch SPA

Results are very similar to the Clarksburg SPA for the control and test stations in the Piney Branch SPA (Fig. 5.11). Changes in median stream conditions among test stations and the control station followed each other closely until 1998. Much of the new SPA development in the upper Piney Branch has occurred since 1998. From 1998, benthic IBI scores in the control station stayed in the good range. Benthic conditions in the test stations declined to poor in 1999 and stayed in the poor range since 2003. Again, naturally occurring events such as drought and rainfall affected all stations at the same time. The test stations had the majority of their drainage areas in the development process during this time. Due to the extensive development prior to the establishment of Piney Branch SPA (Section 3.1), only one control station is available for analysis.
5.3.3 Upper Paint Branch SPA

The time series between control and test stations for the Upper Paint Branch SPA stations are quite different from the Clarksburg and Piney Branch SPAs (Fig. 5.12). Annual changes in both the test and control stations show similar benthic community ratings. There is no significant difference between the test and control stations that can be attributed to the development processes occurring in the test stations drainage areas, as the percentiles of both the test and control stations fully overlap.

The 2002 drought had a major impact to the Upper Paint Branch as shown in the benthic scores beginning in 2003. The Right Fork of the Upper Paint Branch is likely to recover to near pre-construction level stream conditions. Although measurable impacts are present in the test stations, the benthic community structure remains intact and basically unchanged after the majority of the development in the Right Fork subwatershed has been completed and BMPs converted from S&EC to SWM facilities. This recovery will be monitored after the new SWM controls are functioning as designed.
According to monitoring data going back to 1994, brown trout populations have persisted in the Upper Paint Branch SPA. See the Technical Appendix for more information.

![Median Benthic IBI Scores](image)

Figure 5.12. Median Benthic IBI Scores for Upper Paint Branch Control and Test Areas.

5.3.4 Upper Rock Creek SPA

Benthic IBI scores in the small headwater streams monitored for the Upper Rock Creek SPA have consistently been *good* since 2004 (Fig. 5.13). Stations are not separated into control and test areas at this time. However, there may be test sites as early as 2010 to incorporate in the next report. One drainage area (URNB111) has had new construction activities occur since the last report, but not over the majority (≥50%) of its drainage area. In May 2007, mass grading and the construction of S&EC facilities have occurred for Phase I of the Reserve at Fair Hill development. The benthic community at URNB111 has retained a score of *good*. However, the benthic habitat was noted in 2008 to be predominantly buried in fine sediment, so there may be a response in the benthic community in years to come.
5.4 Changes in Benthic Macroinvertebrate Community Structure and Function

5.4.1 Introduction

Previous SPA reports discussed the expectation that the stream conditions in the watershed will recover to pre-development levels once the development process in the watershed is completed. Predicting the recovery potential requires understanding the shifts within the biological community. Examinations of individual metrics were used to determine the cause of the changes to the biological community rating. See the Technical Appendix for a complete list of metrics that comprise both the fish and benthic IBIs.

This section of the report examines changes over time using metrics of community structure (dominant \textit{taxa}) and community function (functional feeding groups) for the benthic macroinvertebrate community. Dominant taxa are those organisms that make up the majority of the sampled community. Functional feeding groups are designations that characterize how organisms in the community obtain food and function in the ecosystem. For more discussion on functional feeding groups and dominant taxa, see the Technical Appendix.
One of the uses of the IBI is to detect differences in individual metrics and determine impacts using additional information such as habitat, chemistry, and land use (Simon and Lyons 1995). Additionally, examining the composition and function of the community supplements the score and provides insight into the direct effects of environmental change and decline (Pederson & Perkins 1986).

5.4.2 Changes in Community Structure and Function

A shift in functional feeding group composition is noted in the test areas of all SPAs and coincides with development activities (see Technical Appendix for more in-depth analyses of these shifts). The shift from sensitive and specialized feeders, such as shredders, to generalist and more tolerant groups, such as collectors and filterers, are characteristic of disturbed streams that have been altered by urbanization processes. Similarly, a dominance of pollution-tolerant and less sensitive Chironimidae (true flies in the midge family) seen in the SPAs is frequently observed at disturbed sites like those in altered landscapes (Pedersen and Perkins 1986; Jones and Clark 1987; Moore and Palmer 2005; Diana et al. 2006).

This suggests that habitat, as well as food quality and availability, changed in these areas as a result of development activities, thereby negatively impacting the benthic fauna. Good quality habitat (such as stable and vegetated banks, wide, sinuous stream channels with coarse substrates, and ample and diverse cover and substrate) is associated with a diverse biological community. Conversely, unvegetated and eroding banks and deep channels with predominantly fine substrates are associated with poor biology (Pedersen and Perkins 1986; Jones and Clark 1987; Heitke et al. 2006; Moerke and Lamberti 2006).

Changes in community feeding structure and function were most obvious in the Clarksburg and Piney Branch SPAs, particularly with the dominance of more tolerant collectors and Chironimidae. Clarksburg and Piney Branch both underwent high-density, rapid development, but differ in that Clarksburg is undergoing development from a predominantly rural landscape while Piney Branch had previous high-density developments exerting legacy effects. Legacy effects from urbanization, agriculture, and other human impacts produce different, and generally degraded, biological assemblages from those in undisturbed systems (Wang et al. 2006). The development in the Clarksburg Newcut Road and Town Center neighborhoods exposed land, shifting biological community structure and function and limited recovery. Post 2008, the pace of new construction slowed, and some areas were converted to SWM. This may have resulted in a slight improvement in benthic communities. However, conditions are still a long way off from what they were pre-construction. The two improved Clarksburg SPA stations, LSLS103B and LSLS104, are examples where more sensitive benthic groups are returning, but are not at all near pre-construction numbers. When these individual station benthic communities are compared pre-construction to post construction (Technical Appendix), they still exhibit a similar shift in community structure to the Clarksburg test stations.
The level of disturbance in each SPA during development periods was an important influence on benthic community structure and function. The Upper Paint Branch and Upper Rock Creek SPA stream conditions and biological communities in areas undergoing development did not differ considerably from the control areas. For Upper Paint Branch, it appears that the 8% impervious cap restricting the amount and impacts of development, sediment and erosion controls, stormwater management, and the relatively short time to complete development (from 2003 to 2006) have limited some impacts to these areas.

In Upper Rock Creek, the phasing of development in addition to the 8% impervious cap has deterred construction impacts to the stream at this time, although it is relatively early in the development process. Changes to biological community structure and function generally take more than a year to materialize and construction has only just begun in 2007.

5.4.3 Future stream conditions and potential for recovery

The changes to the structure and function of the benthic macroinvertebrate community are reflected in the declining stream condition scores. The frequent, intense, and ongoing disturbances through the construction period, particularly in the Clarksburg Town Center and Newcut Road areas, may have impacted the ability of the benthic communities to recover (Moore and Palmer 2005) to near pre-construction conditions. Disruption to the natural system through the conversion of rural land use to urban land use may prevent a full recovery to pre-construction conditions (Konrad and Booth 2005; Wang et al. 2006). However, some improvement to habitat, and thereby benthic communities, may occur upon conversion to SWM.

Stream communities demonstrate some ability to recover following the flushing of deposited materials (Jones and Clark 1987). Recovery of benthic macroinvertebrates is expected as the pace of new construction slows, and areas are converted to SWM (Miltner et al. 2004). However, the level of recovery and the influence of BMPs are unclear at this time. Some findings indicate that large-scale and long-term disturbances in a watershed limit the recovery of stream communities for many decades (Harding et al. 1998) and that the impacts to the form and function of the aquatic systems occur rapidly and are very difficult to avoid or correct (Booth and Jackson 1997).

Although promising, the more stringent stormwater regulations and BMPs such as those utilized by the County have not been in place long enough to test whether they will minimize loss of aquatic life through development and build out. In addition to protecting streams by managing adjacent land use (e.g. leaving riparian zones intact, floodplains under-developed, and adjusting for potential hydrological impacts; described in Miltner et al. (2004)), it may be necessary to preserve entire watersheds, not just fragments or pieces of them (Harding et al. 1998).
6. Conclusions

6.1 BMP Monitoring

BMP monitoring has demonstrated that the redundant features used in reducing stormwater runoff and decreasing pollutant loadings has been more effective than the use of individual structures. BMP feature placement in the treatment train is also an important consideration in optimizing BMP performance and mitigating impacts to receiving streams. Since the inception of the SPA program, DPS has consistently refined BMP design plans and reduced the size of the area draining to individual structures to improve pollutant removal efficiency and mitigate development impacts.

Thus far, results show that BMPs are performing as expected. However, the efficiency of the BMPs is not correlating to the health of the stream based on its biological integrity. Where once it was thought by some that reliance on engineered BMPs would be sufficient to minimize development impacts to stream conditions, it is becoming increasingly apparent that SWM BMPs alone, even when redundant, cannot provide all the solutions for minimizing impacts to streams and protecting water quality.

Many of the streams in the SPAs are small headwater streams that are extremely sensitive to changes in the surrounding soils, drainage features, groundwater recharge and diffuse rainfall infiltration. These changes become accentuated as the landscape alterations required for roads, utilities, lot grades, storm drains and other infrastructure increase due to approved densities. Imperviousness levels resulting from the approved densities can be important indicators of the degree of impacts that will result to the headwater streams. There are insufficient data at this point in the development process to evaluate if the watershed will recover from the negative effects documented during construction.

6.2 Management of BMP Monitoring

The county has worked many years with the monitoring consulting community to develop, through a consensus approach, standardized and consistent BMP monitoring protocols, reporting formats, and quality assurance procedures. Monitoring of best management practices is currently done by private consultants paid for and managed by the developer. The monitoring is approved as part of the Water Quality Plan and is done on the specific development site. This regulatory requirement has made it extremely difficult and time consuming for the County to ensure that this monitoring was done in a consistent manner among many different consultants, and that the data was of known quality. There have been and continues to be numerous problems with the BMP monitoring relating to using consistent and reliable procedures to problems with reporting data.

DEP proposes to revise County Code Chapter 19 so that future BMP monitoring will be managed by the County and not by SPA project developers. Monitoring costs would be funded through a BMP monitoring fee assessed to project developers. It is anticipated
that there would be no net cost increase to developers (taking the existing consultant fees into account).

This would give the County direct control over the quality assurance/quality control requirements and data submission requirements. The County’s other annual stream monitoring activities within SPAs would not change. The County will continue to annually monitor and report upon trends in stream conditions in all SPAs. All other SPA water quality plan review and reporting aspects of the SPA program would also remain the same.

New projects would pay a fee for both stream and BMP monitoring. Developers with approved water quality plans and already engaged in BMP monitoring at their own costs could instead, pay a prorated fee to support BMP monitoring by the County. The BMP monitoring sites chosen by the County may or may not be located on sites where the project developer elects to pay the BMP monitoring fee. In carrying out its BMP monitoring, the County would plan to solicit competitive bids for participation in a task order contract and retain three or more firms to carry out selective BMP monitoring tasks.

The County would target future BMP monitoring to focus within the Clarksburg SPA to enable collected data to be combined with supporting data being gathered through the ongoing and extensive interagency monitoring effort in the watershed. BMP monitoring would also be done within the Upper Rock Creek SPA (8 percent impervious cap) and the Upper Paint Branch SPA (8 percent impervious cap). Monitoring of BMPs within these lower impervious limits would provide information on BMP efficiency within lower densities than those approved for Clarksburg. Once an adequate number of a particular BMP has been identified to be monitored, resources could then be allocated to cover other BMP types. This will require changes to the current SPA law.

6.3 Stream Characteristics

The Newcut Road Neighborhood development has been monitored by the Clarksburg Monitoring Partnership since 2002 (See Sections 4.1 and 4.2). BMPs used in this area were state-of-the-art at the time and designed to meet the current state SWM design manual.

In this portion of the Newcut Road:

- Natural drainage patterns have almost been eliminated;

- Overall topography, natural drainage patterns, and natural infiltration have been altered due to the cut and fill requirements necessary to meet the development requirements of these neighborhoods; and,

- Most of the stormwater runoff is now diverted into stormwater inlets and drains rather than infiltrating into the ground over a wide area as it did before.
The greater the impervious surfaces that cover a watershed, the smaller the amount of precipitation that infiltrates into the groundwater system and the more runoff enters the streams directly. The effects of impervious surface first become evident through the grading and compaction activities that currently occur throughout the site as a result of development. Naturally pervious soils and a diffuse infiltration system are altered and/or lost through the cut and fill requirements currently being followed to develop a property. These changes occur beyond the actual final paved surfaces, limiting the effectiveness of seemingly pervious area, adding to the need to adequately remediate areas where infiltration is desired.

6.4 Biological Stream Monitoring

During 2009, stream conditions changed little in the SPAs from those reported for 2008. Out of 48 stations monitored, 46 stations (96%) had no change in stream conditions from 2008. In 2008 and 2009, there was a decreased amount of development reflecting the economic downturn which may have allowed less active construction sites to stabilize and for completed developments to convert to SWM. Many developments in Clarksburg have been completed and former sediment and erosion control devices have been fully converted to stormwater management BMPs. This rate of conversion was faster than in previous years.

Stream conditions in Ten Mile Creek remain in good condition. Brown trout – indicators of good water quality and one of the most sensitive species to disturbance – were again found in Ten Mile Creek. However, stream conditions have declined and remain fair in the eastern headwaters of Ten Mile Creek (mostly east of I-270). This area (monitoring station LSTM206, on the west side of I-270) receives runoff from some of the Clarksburg Detention Center, I-270, and portions of other Clarksburg developments under construction. Current imperviousness is 12% and high conductivity readings were found throughout the drainage area. As a result of the long term biological stream monitoring program, the sensitivity of the high quality Ten Mile Creek to impacts is apparent.

The Upper Paint Branch SPA streams are likely to recover to near pre-construction conditions. There are a number of factors that influence recovery including: the 8% impervious cap; sediment and erosion controls; stormwater management; and the short time to complete development (2003 to 2006). Additional data collection and analysis will help determine the specific level of recovery and the influence of SWM BMPs (described to be “state-of-the-art” designs at the time). The ability of SWM BMPs to minimize impacts to streams cannot be considered separately from the development process. SWM is a component of the whole; the entire development process must be considered in its ability to minimize stream impacts.

6.5 Maintenance of SWM BMPs

The monitoring of SWM BMPs has highlighted an issue that, while obvious to some, still needs to be emphasized in this report. SWM BMPs will continue to function as designed only if they are regularly cleaned and maintained. With the current emphasis on smaller
structures, the maintenance of these many small structures will become an important factor in how well the structures perform over time. Current structural maintenance is done once a year; other jurisdictions perform structural maintenance every 3 years. Once a SWM structure becomes clogged, filled with road runoff, or blocked, it no longer functions as designed, if at all.

Nonstructural maintenance of SWM BMPs (lawn mowing, trash pickup) is done much more frequently. However even the simple practice of mowing the grass around a SWM BMP can reduce the effectiveness of the BMP. For example, mowing the grass around a sand filter can blow the mowed grass onto the sand media. The grass clippings can form a mat that prevents water from infiltrating and the sand media will either have to be replaced or the organic mat has to be removed.

Long term and proactive SWM facility maintenance is a critical issue with regards to protecting our streams in developed landscapes.
7. Recommendations

The State Stormwater Management Act of 2007 requires all jurisdictions to implement Environmental Site Design (ESD) for all new development to the extent practicable. The use of ESD may further mitigate watershed-scale environmental impacts from development compared with more traditional strategies depending on the extent of development already in the watershed and on the determination of maximum extent practicable. The first SPA property to go through the water quality plan approval process under the new ESD regulations is the Anselmo property in the Upper Paint Branch SPA.

7.1 BMP Water Quality Monitoring Process

Code changes will be proposed that will allow DEP to manage the BMP monitoring. This would allow for more consistency and reduce some of the problems encountered with monitoring. These code changes will be implemented as soon as possible.

7.2 Sediment and Erosion Control Improvements

MDE is currently conducting a complete re-write of the state sediment and erosion control regulations. Changes under consideration as part of that update include faster conversion from S&EC to SWM, stricter phasing stages of construction to allow greater focus on soil stabilization, limiting the acres of exposed soils, stricter utility S&EC and limiting of cut and fill activities to retain natural drainage patterns. DPS is representing Montgomery County on the statewide workgroup. Montgomery County has traditionally been the leader in progressive sediment and erosion control regulations and expects that it will exceed requirements of the new MDE regulations.

7.3 Future of SPA Program

DEP would like to partner with Park and Planning, DPS, developers, consultants, and the environmental community on the future of the SPA program to redefine goals and objectives and the best way to accomplish those goals. DEP will work with Park and Planning and DPS to set up a series of meetings in FY11 to discuss the future of the SPA program.
Page left intentionally blank
8. Literature Cited

Southerland M, Stranko S. 2006. Fragmentation of riparian amphibian distributions by urban sprawl in Maryland, USA. Herpetological Conservation

9. Glossary

Base flow – The portion of the stream discharge that is derived from natural storage (i.e., groundwater outflow and the draining of large lakes and swamps or other sources outside the net rainfall that create surface runoff); discharge sustained in a stream channel, not a result of direct runoff, and without the effects of regulation, diversion, or other works of man. Also called sustaining, normal, ordinary, or groundwater flow.

Before-After, Control-Impact (BACI) Design – An experimental design used to assess environmental impacts. Data is collected Before and After a change and the data is compared between Control and Impacted stations. BACI design is used to account for extraneous factors (such as natural variation). In the Clarksburg SPA, test areas are monitored before and after development and compared to an area where no activity is to occur (Sopers Branch control) and an area where build out is complete and older SWM controls are in place (Germantown/Crystal Rock control).

Benthic macroinvertebrate – Bottom-dwelling aquatic animals lacking a backbone that are visible to the naked eye. This group of organisms includes aquatic insects, worms, crustaceans, and mollusks in streams, rivers, lakes, estuaries, and oceans.

Best Management Practices (BMPs) – Technique, measure or structural control used to manage pollution or other detrimental impacts to a watershed or wetland.

Biological integrity – The condition of the biological communities of a water body based on a comparison to the biological communities in a reference water body that represents the best conditions to be expected for that region.

Bioretention structure/area/facility – A stormwater best management practice (BMP) that uses physical, chemical and biological properties of soils, microbes, and plants to filter pollutants from stormwater runoff. Some reduction in stormwater velocity can also be achieved. Bioretention cells are designed to collect, and store stormwater runoff from on- lot impervious areas such as parking lots and allow it to infiltrate into soils. Cells can be incorporated into median strips, parking lot islands and swales.

Catchment – The area of land draining to a BMP or by a stream or stream system.

Channel protection volume (Cpv) – A design criteria which requires 24 hour detention of the one year post-developed, 24 hour storm event for the control of stream channel erosion.

Collectors – Organisms that consume fine or dissolved pieces of organic matter (e.g., leaf fragments or other material on the stream bottom).

http://www.epa.gov/bioindicators/html/invertclass.html

Cut and fill – Process of earth moving by excavating part of an area and using the excavated material for adjacent embankments or fill areas.

Effluent – (Outflow) Stormwater that leaves the outfall of a S&EC or SWM BMP or sewer.
Environmental Overlay Zone – A zone or district created to conserve natural resources or promote certain types of development. The environmental overlay zones in SPAs aim to protect water quality and quantity and biodiversity. This is accomplished by regulating the amount and location of impervious surfaces in order to maintain groundwater levels, control erosion and allow the ground to filter water naturally, thereby minimizing the temperature and volume of stormwater runoff.

Environmentally sensitive areas – Refers to areas having beneficial features to the natural environment, including but not limited to: steep slopes; habitat for Federal and/or State rare, threatened, and endangered species; 100-year ultimate floodplains; streams; seeps; springs; wetlands, and their buffers: priority forest stands; and other natural features in need of protection.

Environmental Site Design (ESD) – A stormwater management strategy aimed at maintaining or restoring the natural hydrologic functions of a site to achieve natural resource protection objectives and fulfill environmental regulatory requirements. Under this premise, stormwater discharges are to be controlled to the maximum extent practicable and nonstructural BMPs and other better site design techniques must be implemented.

Ephemeral stream – A stream channel located above the water table and thereby only carries water during and immediately after periods of precipitation or snowmelt.

Evapotranspiration – The loss of water by evaporation from water surfaces and by transpiration from plants.

Filterers – Organisms that are suspension feeders or filter dissolved particles from the water column; a subcomponent of the group of organisms known as collectors. http://www.epa.gov/bioiweb1/html/invertclass.html

First flush – The first inch of rain over the impervious area creating stormwater with the highest pollutant loading.

Flow splitter – An engineered, hydraulic structure designed to divert a percentage of storm flow to a BMP located out of the primary channel, or to direct stormwater to a parallel pipe system or to bypass a portion of base flow around a BMP.

Flow-weighted composite sample – A mixed or combined sample that is formed by combining a series of individual and discrete samples at specific intervals and characterized by the flow rate of the discharge. This sampling method characterizes the entire storm event and the measured flow is used to calculate the loading of pollutants in the stormwater sample.

Forebay – Storage space located near a stormwater BMP inlet that serves to trap incoming coarse sediments before they accumulate in the main treatment area. http://www.mde.state.md.us/assets/document/sedimentstormwater/Glossary.pdf

Functional feeding groups – designations that characterize how organisms in the community obtain food.

Geomorphology – See “Stream morphology”.

Grab sample – A single sample of stormwater representing the concentration of pollutants at a discrete point in time. This method of sampling does not represent an entire storm event.
Headwater streams – These small streams are the origins of larger streams and rivers and the place from which the water in the downstream water bodies originates. The health of the larger systems depends upon the condition of the headwater areas. Headwater streams are small and typically fed by groundwater, however some may be ephemeral / intermittent, drying seasonally or just under drought conditions. Because of their small size and variability, they tend not to support a well-balanced fish community.

Home range – The area in which an animal carries out its normal activities.

Hydrodynamic device – See “Hydrodynamic structure”.

Hydrodynamic structure – (also Hydrodynamic device or separator) is a class of SWM BMPs that treat stormwater by slowing flow to remove sediment and other pollutants. Depending on the device, treatment may be accomplished by swirling the water or through settling and indirect filtration. Due to these processes, hydrodynamic structures are most effective at treating heavy particulates (such as suspended solids) or “floatables” (such as oil). They are often used as pre-treatment in SPAs and can be either proprietary (trademarked/patented by a corporation) or non-proprietary.

Hydrograph – A graph showing variation in stage (depth), discharge, flow, or velocity over time in a stream of water.

Hydrology – The study of water and its occurrence, dynamics, and function in the environment.

Imperviousness (Impervious surface or area) – Impervious surfaces are those that are impenetrable to rainwater, snow melt, and runoff and prevent the natural infiltration of water into the soil. Impervious surfaces include parking lots, roads, rooftops, and sidewalks as well as soils compacted during the development process.

Index of biotic integrity (IBI) – A measurement of the aquatic community's structure and function within Special Protection Areas as compared to the aquatic community inhabiting the least impaired reference streams within a specific region.

Infiltration – The movement of water through the ground surface into the soil. Also the technique of applying large volumes of waster or stormwater to land to penetrate the surface and percolate through the underlying soil.

Infiltration trench – A SWM BMP designed to manage stormwater quantity and quality by allowing stormwater to infiltrate through permeable soils into the groundwater. Generally, it is a shallow excavated trench filled with gravel or a similar material and lined with filter fabric that treats water as it percolates into the groundwater. Pollutants are filtered out as runoff infiltrates the surrounding soils. Infiltration trenches also provide groundwater recharge and preserve base flow in nearby streams.

Influent – (Inflow) stormwater runoff flowing into a S&EC or SWM BMP or sewer.

Irreducible level/concentration – A limit to how much pollutant removal can be achieved; it is a level in which sediment and nutrient concentrations exist at such low levels that they cannot be reduced further, regardless of how much more surface area, treatment volume, or additional treatment types are provided.
Land use – The way in which land is zoned, delineated, and used. Categories include urban (open space and low, medium, and high density), forest (including wetlands), agriculture (pasture/hay, cultivated crops), open water, and other (i.e. barren land, unconsolidated shore).

Legacy Effect – Residual impacts to an environmental system remaining from previous land use practices.

Limit of Disturbance – Boundary containing all development and construction activities.

Metrics – Attribute or measurable characteristics of a biological assemblage that provides reliable and relevant signals about the effects of environmental and anthropogenic stresses.

Oil-grit separator – also known as a water quality inlet (WQI), consist of a series of chambers that promote sedimentation of coarse materials and separation of free oil (as opposed to emulsified or dissolved oil) from storm water. WQIs typically capture only the first portion of runoff for treatment and are generally used for pretreatment before discharging to other best management practices (BMPs). http://www.epa.gov/owm/mtb/wtrqlty.pdf

One-year (1-year) storm – A storm that has a recurrence interval (or frequency) of one year or statistically has a 100% chance on average of occurring in a given year; approximately 2.6 inches rainfall in 24 hours.

Outfall – The end/outlet of a structural BMP, drain, or sewer.

Paired catchment (watershed) design – A study design that pairs control and test drainage areas along similar natural characteristics. See “Before-After, Control-Impact (BACI) Design”

Pioneer species – The first species or groups of species to colonize or re-colonize a barren or disturbed environment. A high number of these types of species typically indicates a stressed environment or one that is lacking features necessary for more specialized or sensitive species, thereby reflecting lower biotic or biological integrity.

Pollutant – Generally, any substance introduced into the environment that adversely impacts a natural resource or the health of humans, animals, plants, or ecosystems.

Recharge volume (Rev) – The requirement to have a specific volume of stormwater runoff or water quality volume (WQv) recharged into the groundwater in order to reverse the impacts of paved surfaces on groundwater infiltration. The recharge volume is based on the hydrologic soil groups and the amount of impervious area.

Regulatory weir – a device acting like an obstruction (such as a wall or plate) that controls the flow of stormwater in a treatment train.

Riparian/ Riparian zone – An area of land and vegetation adjacent to a stream that has a direct influence on the stream. This includes woodlands, vegetation, and floodplains.

Sediment and Erosion Control (S&EC) – Sediment and Erosion Controls are BMPs installed prior to construction and land disturbance activities to capture and treat sediment-laden runoff. Examples utilized in SPAs include supersilt fences and sediment basins outfitted with additional treatment features.
Sedimentation – Sedimentation is the process of sediment loads entering the stream system and covering the stream bed. Excessive loadings of fine sediment degrades and eliminates riffle and pool habitats available for benthic macroinvertebrates, fish, and stream salamanders. Excessive sediment loads can smother these organisms and their eggs. The movement of sediment can actually scour the stream bottom, accelerate erosion, and diminish bank stability.

Seep – Water feature fed exclusively by groundwater. Seeps typically do not flow.

Shredders – Organisms that consume coarse organic matter such as leaves.
http://www.epa.gov/bioindicators/html/invertclass.html

Spring – Water feature fed by groundwater that flows intermittently or constantly.

Stormwater Management (SWM) – Stormwater Management is a BMP utilized on properties after construction is complete to control the quantity and quality of stormwater runoff. Stormwater Management in the SPAs includes treating the first inch of rain over the impervious/developed surface (also known as the “first flush”) as quality control and controls stormwater flows by storing the one-year, 24 hour storm (about 2.6 inches of rain). Quality treatment is aimed at minimizing pollutant loadings of receiving streams whereas quantity control functions primarily as maintaining natural stream flows, groundwater infiltration, and bank stability.

Stream flashiness – The stream flow response to storms. Increased stream flashiness means stream flow and water elevations increase (peak) and decrease rapidly in response to storm events. This increased response can erode stream channels and impair stream habitat and aquatic communities.

Stream morphology – The study of the changes to stream channel form, shape, structure, and area over time.

Taxa – The plural form of taxon. A category or group of organisms.

Tolerance values – A rating assigned to an organism that represents its ability to tolerate various environmental stressors (such as low dissolved oxygen levels, high amounts of siltation or salinity, or varying amounts of toxic chemicals).

Topography The physical features of the land’s surface area including elevations and positions of natural and man-made features.

Total Kjeldahl nitrogen (TKN) – The sum-total of organic and ammonia nitrogen in a sample, determined by the Kjeldahl method.

Total Petroleum Hydrocarbon (TPH) – Measure of the concentration or mass of petroleum hydrocarbon constituents present in a soil or water sample. TPH is a family of chemical compounds (exclusively hydrogen and carbon) found in petroleum products that originally come from crude oil. Some chemicals that may be found in TPH are gasoline and fuel components, mineral oils, hexane, benzene, toluene and fluorene.

Total Suspended Solids (TSS) – The weight of particles that are suspended in water. Suspended solids in the water clog the gills of fish, invertebrates, and larval amphibians, reduce the ability of
light to penetrate the water column, and decrease stream habitat availability and quality when they settle on the stream substrate. Suspended solids also bind to metals and other contaminants which can be toxic in aquatic systems.

Transfer of Development Rights (TDR) – A method for protecting land by transferring the "rights to develop" from one area and giving them to another. The TDR program in Montgomery County allows developers to increase residential density in designated areas outside of the Agricultural Reserve to compensate farmers for the land equity lost through the down-zoning that created the Ag. Reserve.

Trash rack – Grill, grate or other device installed at the intake of a channel, pipe, drain or spillway for the purpose of preventing oversized debris from entering the structure. http://www.mde.state.md.us/assets/document/sedimentstormwater/Glossary.pdf

Vegetated swale – A SWM BMP designed to trap particulate pollutants (suspended solids and trace metals), promote infiltration, and reduce the flow velocity of stormwater runoff. It is a broad, shallow channel with vegetation covering the side slopes, and bottom. They can be natural or man-made. Vegetated swales can serve as part of a storm water drainage system and can replace curbs, gutters and storm sewer systems. Therefore, swales are best suited for residential, industrial, and commercial areas with low flow and smaller populations. http://www.epa.gov/owm/mtb/vegswale.pdf

Water Quality Inventory – All persons proposing to disturb land within an SPA, except as provided by law, must submit, for review and approval, a water quality inventory which covers any portion of the project located within the SPA. The inventory includes a stormwater management concept plan, a sediment control concept plan, documentation of impervious areas, additional documentation to show avoidance, minimization, or proposed mitigation for impacts on environmentally sensitive areas, and on priority forest conservation areas as specified in the Planning Board’s Environmental Guidelines, and rationale for any proposed encroachment on said areas (per Montgomery County Regulation on Water Quality Review for Development in Designated Special Protection Areas).

Water Quality Volume (WQv) – The volume needed to capture and treat 90% of the average annual stormwater runoff volume equal to 1 inch times the volumetric runoff coefficient (Rv) times the site area. http://www.mde.state.md.us/assets/document/sedimentstormwater/Glossary.pdf

Water Year Reports – The U.S. Geological Survey "water year" in reports that deal with surface-water supply is defined as the 12-month period October 1, for any given year through September 30, of the following year. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1999 is called the "1999" water year. http://water.usgs.gov/nwc/explain_data.html

Weir - A structure used to raise water level or divert flow. A calibrated weir is used in conjunction with a sampling apparatus to raise water level in a pipe or channel at a known amount in order to calculate sediment and pollutant loadings.
Acknowledgements:

- Montgomery County Department of Permitting Services
- Maryland-National Capital Park and Planning Commission
 - University of Maryland, College Park campus
 - USGS Water Resources Division, Baltimore, MD
 - USGS, Environmental Resources Center, Reston, VA
 - Virginia Polytechnic Institute and State University
 - George Mason University
- United States Environmental Protection Agency (U.S. EPA)
 Landscape Ecology Branch, Research Triangle Park, NC
- U.S. EPA National Risk Management Research Laboratory, Cincinnati, OH
 - U.S. EPA Office of Research and Development, Atlanta, GA
 - U.S. EPA Environmental Science Center, Ft. Meade, MD
RELATED DOCUMENTS:
- SPA Annual Report, 2008
- SPA Annual Report, 2007
- SPA Annual Report, 2006
- SPA Annual Report, 2005
- SPA Annual Report, 2004
- SPA Annual Report, 2003
- SPA Annual Report, 2002
- SPA Annual Report, 2001
- SPA Annual Report, 2000
- SPA Annual Report, 1999
- SPA Annual Report, 1998
- Clarksburg Conservation Plan
- Piney Branch Conservation Plan
- Upper Paint Branch Conservation Plan

All of the documents cited above are available online in PDF format on our website:
In addition, the Department of Environmental Protection maintains an extensive collection of annual, technical, and general reports, public information factsheets, and related publications. Many are available in both PDF and HTML format, and in some cases, print copies of documents are available. Please contact us for more information.

Department of Environmental Protection/ Montgomery County, Maryland
255 Rockville Pike, Suite 120, Rockville, MD 20850
240.777.7770 fax 240.777.7765
e-mail: dep.askdep@montgomerycountymd.gov