Report of Mercury Analysis IC Traps

Project: 200454.0000.0000 Report Date: March 7, 2014

Prepared for: Gary Hunt TRC Environmental 21 Griffin Road North Windsor, CT 06095

Brooks Rand Labs Project ID: TRC-LW1401

3958 6th Ave. NW Seattle WA 98107 P: 206-632-6206 F: 206-632-6017 E: brl@brooksrand.com www.brooksrand.com

Table of Contents

Case Narrative
Report Information
Sample Information6
Batch Summary6
Sample Results6
Accuracy & Precision Summary7
Method Blanks & Reporting Limits7
Instrument Calibration 8
Sample Containers
Shipping Containers
Chain-of-Custody Form
Waybill11
Sample Calculations12
Mercury Data Sequence 1400137, Batch B140197 13

Case Narrative

Shipping and Receiving

On February 5, 2014, Brooks Rand Labs (BRL) received four (4) iodated carbon (IC) traps at 11:40 A.M. in a box at ambient temperature. The chain-of-custody (COC) form requested analysis for total mercury (Hg). The COC form did not list sample collection dates. The samples were received and stored securely according to BRL standard operating procedures (SOP) and EPA methodology.

Preservation and Holding Time

All method and SOP requirements for preservation and holding time were satisfied.

Total Mercury in IC Traps by EPA Method 324/1631 (SOP BR-0007)

All samples are prepared in accordance with EPA Method 324 and analyzed in accordance with EPA Method 1631. Samples are digested with nitric acid and sulfuric acid at 90°C for 4 hours, oxidized with bromine monochloride (BrCl) and then analyzed with stannous chloride (SnCl₂) reduction, single gold amalgamation, and cold vapor atomic fluorescence spectroscopy (CVAFS) detection using a Brooks Rand Instruments MERX-T CVAFS Mercury Automated-Analyzer.

The results were method blank-corrected as described in the calculations section of the relevant BRL SOP(s) and may have been evaluated using reporting limits that have been adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

Samples were reported on a ng/trap basis.

Samples results that were less than the MDL were qualified **U** and reported at the MDL.

Sequence 1400137

Instrument calibration, meeting all quality control criteria, was successfully achieved on the day of sample analysis.

Batch B140197

The sample *B'ville-Hg-Spike* (1406018-04) was spiked with 50 ng of Hg at BRL before shipping to the client. The client ran air through this trap, just like the other samples. If the initial sample was *B'ville-Hg-1-Col* (1406018-02), the percent recovery of the spiked trap was 94%. If the initial sample was *B'ville-Hg-1-Pri* (1406018-01), the percent recovery of the spiked trap was 49.8%.

The method blank (BLK) BLK5 was a trap blank prepared at BRL with an un-used trap to show that the IC material stored in a trap is not a source of Hg itself. The result for BLK was non-detectable at 0.5 ng/trap. It was not included with the other BLKs that were prepared with the batch since it is not used to correct results.

The blank spike (BS) BS1 was an IC trap that was spiked with 50 ng of Hg at the same time the as the spiked trap sent to the client.

Aside from concentration qualifiers, all data was reported without qualification and all associated quality control sample results met the acceptance criteria.

We certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. BRL, an accredited laboratory, certifies that the reported results of all analyses for which BRL is NELAP accredited meet all NELAP requirements. For more details, please see the *Report Information* page in your report. Please feel free to contact us if you have any questions regarding this report.

Lydia Greaves Project Manager Iydia@brooksrand.com

Mi Sun Um Data Manager misun@brooksrand.com

BRL Report 1406018 Client PM: Gary Hunt Client PO: 200454.0000.0000

Report Information

Laboratory Accreditation

BRL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BRL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksrand.com/default.asp?contentID=586. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

BLK BRL BS CAL CCV COC CRM D DUP ICV	method blank Brooks Rand Labs laboratory fortified blank calibration standard continuing calibration verification chain of custody record certified reference material dissolved fraction duplicate initial calibration verification	MS MSD ND PS REC RPD RSD SCV SOP	matrix spike matrix spike duplicate non-detect non-reportable post preparation spike percent recovery relative percent difference relative standard deviation secondary calibration verification standard operating procedure
DUP ICV	duplicate initial calibration verification	SCV SOP	secondary calibration verification standard operating procedure
MDL MRL IBI	method detection limit method reporting limit instrument blank	SRM T	standard reference material total recoverable fraction

Definition of Data Qualifiers

(Effective 9/23/09)

- **B** Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **E** An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- **H** Holding time and/or preservation requirements not met. Result is estimated.
- J Estimated value. A full explanation is presented in the narrative.
- **J-M** Duplicate precision (RPD) for associated QC sample was not within acceptance criteria. Result is estimated.
- J-N Spike recovery for associated QC sample was not within acceptance criteria. Result is estimated.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Result is estimated.
- **N** Spike recovery was not within acceptance criteria. Result is estimated.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- **U** Result is \leq the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- **X** Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.

These qualifiers are based on those previously utilized by Brooks Rand Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic</u> <u>Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BRL.

BRL Report 1406018 Client PM: Gary Hunt Client PO: 200454.0000.0000

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
B'ville-Hg-1-Pri	1406018-01	IC Trap	Sample	unknown	02/05/2014
B'ville-Hg-1-Col	1406018-02	IC Trap	Sample	unknown	02/05/2014
Lucketts-Hg-1	1406018-03	IC Trap	Sample	unknown	02/05/2014
B'ville-Hg-Spike	1406018-04	IC Trap	Field Spike	unknown	02/05/2014

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
Hg	IC Trap	EPA 324/1631 Manual	02/17/2014	02/20/2014	B140197	1400137

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
B'ville-Hg-1-Co 1406018-02	ol Hg	IC Trap	NA	1.1	U	1.1	3.3	ng/m³	B140197	1400137
B'ville-Hg-1-Pi 1406018-01	r i Hg	IC Trap	NA	22.1		1.1	3.3	ng/m³	B140197	1400137
B'ville-Hg-Spil 1406018-04	ke Hg	IC Trap	NA	47.0		1.1	3.3	ng/m³	B140197	1400137
<i>Lucketts-Hg-1</i> 1406018-03	Hg	IC Trap	NA	1.1	U	1.1	3.3	ng/m³	B140197	1400137

Accuracy & Precision Summary

Batch: B140197 Lab Matrix: IC Trap Method: EPA 324/1631 Manual

Sample B140197-BS1	Analyte Laboratory Fortified Bla	Native Spike Ink (1350014)	Result	Units	REC & Limits	RPD & Limits
	Hg	50.00	50.7	ng/m³	101% 80-120	
B140197-BS2	Laboratory Fortified Bla Hg	ink (1350014) 100.0	107.3	ng/m³	107% 80-120	

Method Blanks & Reporting Limits

Batch: B140197 Matrix: IC Trap Method: EPA 324/1631 Manual Analyte: Hg

Sample	Result	Units		
B140197-BLK1	0.2	ng/m³		
B140197-BLK2	0.08	ng/m³		
B140197-BLK3	0.05	ng/m³		
B140197-BLK4	0.002	ng/m³		
	Average: 0.1		Standard Deviation: 0.1	MDL: 1.1
	Limit: 2.2		Limit: 0.7	MRL: 3.3

BRL Report 1406018 Client PM: Gary Hunt Client PO: 200454.0000.0000

Instrument Calibration

Sequence: 1400137 Instrument: THG-05 Date: 02/20/2014 Analyte: Hg

Total Mercury and Mercury Speciation by CVAFS Method: EPA 324/1631 Manual

Lab ID 1400137-IBL1	True Value	Result 1.8	Units pg of Hg	REC	& Limits
1400137-IBL2		1.8	pg of Hg		
1400137-IBL3		2.2	pg of Hg		
1400137-IBL4		1.7	pg of Hg		
1400137-CAL1	10.00	9.5	pg of Hg	95%	
1400137-CAL2	25.00	24.9	pg of Hg	100%	
1400137-CAL3	100.0	100.4	pg of Hg	100%	
1400137-CAL4	500.0	511.6	pg of Hg	102%	
1400137-CAL5	2500	2514	pg of Hg	101%	
1400137-CAL6	10000	10250	pg of Hg	103%	
1400137-ICV1	1568	1625	pg of Hg	104%	90-110
1400137-CCB1		3.8	pg of Hg		
1400137-CCV1	1000	1007	pg of Hg	101%	90-110
1400137-CCB2		2.3	pg of Hg		
1400137-CCB3		2.1	pg of Hg		
1400137-CCB4		1.9	pg of Hg		
1400137-CCV2	500.0	505.7	pg of Hg	101%	90-110
1400137-CCB5		1.9	pg of Hg		
1400137-CCV3	500.0	513.2	pg of Hg	103%	90-110
1400137-CCB6		1.8	pg of Hg		

BRL Report 1406018 Client PM: Gary Hunt Client PO: 200454.0000.0000

Sample Containers

Lab ID: 1406018-01 Sample: B'ville-Hg-1-Pri Comments: Primary Volume		R Sa	eport Matrix: IC Trap ample Type: Sample	Collected: unknown Received: 02/05/2014		
Des Container A IC Trap	Size	Lot 09016	Preservation none	P-Lot n/a	рН	Ship. Cont. Cardboard Box
Lab ID: 1406018-02 Sample: B'ville-Hg-1-Col Comments: Collocate Volume		R Sa	eport Matrix: IC Trap ample Type: Sample		Colleo Receive	cted: unknown ed: 02/05/2014
Des Container A IC Trap	Size	Lot 09016	Preservation none	P-Lot n/a	рН	Ship. Cont. Cardboard Box
Lab ID: 1406018-03 Sample: Lucketts-Hg-1 Comments: Volume		Rı Sa	eport Matrix: IC Trap ample Type: Sample		Colleo Receive	cted: unknown ed: 02/05/2014
Des Container A IC Trap	Size	Lot 09016	Preservation none	P-Lot n/a	рН	Ship. Cont. Cardboard Box
Lab ID: 1406018-04 Sample: B'ville-Hg-Spike Comments: Spike	R Sa	eport Matrix: IC Trap ample Type: Field Spike	Collected: unknown Received: 02/05/2014			
Des Container A IC Trap	Size	Lot 09019	Preservation none	P-Lot n/a	рН	Ship. Cont. Cardboard Box

Shipping Containers

Cardboard Box

Received: February 5, 2014 11:40 Tracking No: 521442180661 via FedEx Coolant Type: None Temperature: ambient Description: Cardboard Box Damaged in transit? No Returned to client? No Custody seals present? No Custody seals intact? No COC present? Yes

BRL Report 1406018

3958 6th Avenue NW Seattle, WA 98107 Phone: 206-632-6206 Fax: 206-632-6017

Chain of Custody Record

of Page_

MEANINGFUL METALS DATA samples@brooksrand.com

1406018

White: LAB COPY Yellow: CUSTOMER COPY

Client: TRC EnvironmentalAddress: 21 Griffin Road NContact: Gary HuntWindees CT						North	COC receipt o If so, by: ema					ipt co email	ot confirmation? Y / N mail / fax (circle one)							
Client project ID: 200454.	0000.0	000		- vvin	E									Email:ghunt@trcsolutions.com						
PO #:					Phone #:								Fax #	#:						
Requested TAT in business days:	Colle	ection	М	iscella	scellaneous			Field serva	tion			Ana	alyse	s requ	ired				Comments	
 20 (standard) 15 10 5 Other Surcharges apply for expedited turn around times. 	late	ime	sampler (initials)	Aatrix type	t of containers	<pre>field filtered? (Y/N)</pre>	Inpreserved / ice only	+ICl / HNO ₃ (circle one)	Other (specify)	fotal Hg, EPA 1631	Methyl Hg, EPA 1630	CP-MS Metals (specify)	As / Se species (specify)	% Solids	Filtration	Other (specify)	Other (specify)			
Biville-Has 1 -Pri										x								Primary Vo	lume:	
								· · ·		Х								Collocate V	olume:	
2 B ville-rig-) -Col				<u> </u>						*								volume:		
A FBB-Hg-							 											- ţield blank		
5 Bustle He - Solke										X								Spike	2	
6	1																			
7	1																			
8																				
9				1																
10																				
Relinquished by:), But		Date:	2-4-2	7014	2014 Time: 14.30 Relinquis					shed	by:					Date	:		Time:	
Received by:		Date:			Time			Re	ceive	dial I	RUI	N. []	Èn c	. U		Date	2.2	6 Appl	Time: []-[¹ -]	D.
Shipping carrier:			# of	coole	rs:				Lwo	ric orc	ter ID			ENGLASS (BRE	proje	at ID		

10 of 31

Sample Calculations

<u>CVAFS</u>

EPA 1631, IC Trap

$$\frac{\frac{CFD}{A} - \frac{BF_d}{A_d}}{I * 1000}$$

C – result produced at the instrument, pg

F – final volume of the sample preparation, mL

D – dilution factor of any dilution of the preparation made at the instrument (*1)

A – analyzed volume of the prep or dilution of the prep, mL

B- the mean of the method blank instrument result, pg

 F_{d} – default final prep volume for the method used for the method blanks, 40 mL

 A_{d} – default analyzed volume for the method used for the method blanks, 0.1 mL

I – aliquot of sample prepared, g.

ANALYSIS SEQUENCE

Brooks Rand Labs

1400137

Instrument:	THG-05
	1110 00

Lab Number	Batch #	Analysis	Order	STD ID	Source ID	BRL Project #	Due	Comments
1400137-IBL1	1400137	QC	1		-			
1400137-IBL2	1400137	QC	2		-			
1400137-IBL3	1400137	QC	3		-			
1400137-IBL4	1400137	QC	4		-			
1400137-CAL1	1400137	QC	5	1407002	-			
1400137-CAL2	1400137	QC	6	1407003	-			
1400137-CAL3	1400137	QC	7	1407004	-			
1400137-CAL4	1400137	QC	8	1407005	-			
1400137-CAL5	1400137	QC	9	1407006	-			
1400137-CAL6	1400137	QC	10	1407007	-			
1400137-ICV1	1400137	QC	11	1407008	-			
1400137-CCB1	1400137	QC	12		-			
1400137-CCV1	1400137	QC	13	1408017	-			
1400137-CCB2	1400137	QC	14		-			
1400137-CCB3	1400137	QC	15		-			
1400137-CCB4	1400137	QC	16		-			
B140197-BLK1	B140197	QC	17		-			
B140197-BLK2	B140197	QC	18		-			
B140197-BLK3	B140197	QC	19		-			
B140197-BLK4	B140197	QC	20		-			
B140197-BLK5	B140197	QC	21		-			
B140197-BS1	B140197	QC	22		-			
B140197-BS2	B140197	QC	23		-			
1406018-01	B140197	Hg-IC-70:30+BrCl-MerxT	24			TRC-LW1401	2/27/2014	
1406018-02	B140197	Hg-IC-70:30+BrCl-MerxT	25			TRC-LW1401	2/27/2014	
1406018-03	B140197	Hg-IC-70:30+BrCl-MerxT	26			TRC-LW1401	2/27/2014	

ANALYSIS SEQUENCE

BRL Report 1406018

Brooks Rand Labs

1400137

Instrument: THG-05

Lab Number	Batch #	Analysis	Order	STD ID	Source ID	BRL Project #	Due	Comments
1400137-CCV2	1400137	QC	27	1407009	-			
1400137-CCB5	1400137	QC	28		-			
1406018-04	B140197	Hg-IC-70:30+BrCl-MerxT	29			TRC-LW1401	2/27/2014	
1407008-01	B140197	Hg-IC-70:30+BrCl-MerxT	30			TRC-LW1401	3/5/2014	
1407008-02	B140197	Hg-IC-70:30+BrCl-MerxT	31			TRC-LW1401	3/5/2014	
1407008-03	B140197	Hg-IC-70:30+BrCl-MerxT	32			TRC-LW1401	3/5/2014	
1407008-04	B140197	Hg-IC-70:30+BrCl-MerxT	33			TRC-LW1401	3/5/2014	
1400137-CCV3	1400137	QC	34	1407009	-			
1400137-CCB6	1400137	QC	35		-			

SOP(s)/Rev#(s):BR-007 Rev 002

THg Analysis Benchsheet: THg MERX-T

	Sequence:_ 1400137 _	Batches: 13 140197			
	Analyst: BDT	C	/14 Instrument ID: TH6D 5		
10 ng,	/mL std ID: 1406030			SnCl2 ID: 14050 26	
1 ng,	/mL std ID: 1406031			NH2OH-HCIID:1406024	
	ICV std ID: 1406032	· ·		Balance ID:	
* all sample vo	lumes are determined volu	metrically unles	s otherwise	noted	
Run# / Pos	DBI Commin ID	Analyze Vol	Dilution	Analysis Comments / for spiked QC:	
#	BRL Sample ID	(mL)	Factor	Source ID, standard ID, and spike volume	
1	Rinse			· · · · · · · · · · · · · · · · · · ·	
2	Rinse			· · · · · · · · · · · · · · · · · · ·	
3	SEQ-IBL1			· · · · · · · · · · · · · · · · · · ·	
4	SEQ-IBL2				
5	SEQ-IBL3				
6	SEQ-IBL4				
7	SEQ-CAL1	0.01		1 ng/mL	
8	SEQ-CAL2	0.025		1 ng/mL	
9	SEQ-CAL3	0.1		1 ng/mL	
10	SEQ-CAL4	0.05		10 ng/mL	
11	SEQ-CAL5	0.25		10 ng/mL	
12	SEQ-CAL6	1		10 ng/mL	
13	SEQ-ICV1	1	· ·	NIST 1641d	
14	SEQ-CCB1				
15	SEQ-CCV	0.05		10 ng/mL double spiked.	
16	SEQ-CCB			· · · · · · · · · · · · · · · · · · ·	
17	SEQ-CCB				
18	SEQ-CCB	·			
19	B140197-BLK1	0.1			
20	B140197-BLK2	0.1			
21	B140197-BLK3	0.1			
22	B140197-BLK4	0.1			
23	B140197-BLK5	0.1			
24	B140197-BS1	0.1			

	25	B140197-BS2	0.1		
	26	1406018-01	0.1		
	27	1406018-02	0.1		
	28	1406018-03	0.1		
	29	SEQ-CCV	0.05		10 ng/mL
	30	SEQ-CCB			
	31	1406018-04	0.1		
	32	1407008-01	0.1		
	33	1407008-02	0.1		
	34	1407008-03	0.1		
	35	1407008-04	0.1		
	36	SEQ-CCV	0.05		10 ng/mL
	37	SEQ-CCB			
-	38-				
	39				
	40				
	41				
	42			- 2/11	/it
	43				1991
	44				
	45				
	46		v		
	47				
	48				

49			
 50			
51			
52			
53			
54			
55			
 56			
 57			
58			
59			
60			
 61		<u> </u>	/
 62		2/21/	14
 63		 130	T
 64			
 65			
 66			
67	·		
 68			
 69			
 70			
 71	· · · · · · · · · · · · · · · · · · ·		
72			

BRL Report 1406018

18 of 31

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 1 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 2 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 4 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 5 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 6 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 7 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 9 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 10 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 11 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Report of Mercury Analysis IC Traps

Project: 200454.0000.0000 Samples Collected: February 7, 2014 Report Date: March 7, 2014

Prepared for: Gary Hunt TRC Environmental 21 Griffin Road North Windsor, CT 06095

Brooks Rand Labs Project ID: TRC-LW1401

3958 6th Ave. NW Seattle WA 98107 P: 206-632-6206 F: 206-632-6017 E: brl@brooksrand.com www.brooksrand.com

Table of Contents

Case Narrative	3
Report Information	5
Sample Information	6
Batch Summary	6
Sample Results	6
Accuracy & Precision Summary	7
Method Blanks & Reporting Limits	7
nstrument Calibration	8
Sample Containers	9
Shipping Containers	9
Chain-of-Custody Form 1	0
Naybill1	1
Sample Calculations1	2
Mercury Data Sequence 1400137, Batch B140197 1	3

Case Narrative

Shipping and Receiving

On February 11, 2014, Brooks Rand Labs (BRL) received four (4) iodated carbon (IC) traps at 09:48 A.M. in a box with blue ice and at a temperature of 0.7°C. The chain-of-custody (COC) form requested analysis for total mercury (Hg). The samples were received and stored securely according to BRL standard operating procedures (SOP) and EPA methodology.

Preservation and Holding Time

All method and SOP requirements for preservation and holding time were satisfied.

Total Mercury in IC Traps by EPA Method 324/1631 (SOP BR-0007)

All samples are prepared in accordance with EPA Method 324 and analyzed in accordance with EPA Method 1631. Samples are digested with nitric acid and sulfuric acid at 90°C for 4 hours, oxidized with bromine monochloride (BrCl) and then analyzed with stannous chloride (SnCl₂) reduction, single gold amalgamation, and cold vapor atomic fluorescence spectroscopy (CVAFS) detection using a Brooks Rand Instruments MERX-T CVAFS Mercury Automated-Analyzer.

The results were method blank-corrected as described in the calculations section of the relevant BRL SOP(s) and may have been evaluated using reporting limits that have been adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

Samples were reported on a ng/trap basis.

Samples results that were less than the MDL were qualified **U** and reported at the MDL.

Sequence 1400137

Instrument calibration, meeting all quality control criteria, was successfully achieved on the day of sample analysis.

Batch B140197

The sample *FBB-Hg-1* (1407008-04) was listed as a field blank and was the only sample that had a detectable Hg concentration. Since the preparation requires the removal of the IC from the glass trap, the original trap and plastic bag was not preserved. It cannot be confirmed whether this sample was switched with another sample.

The method blank (BLK) BLK5 was a trap blank prepared at BRL with an un-used trap to show that the IC material stored in a trap is not a source of Hg itself. The result for BLK was non-detectable at 0.5 ng/trap. It was not included with the other BLKs that were prepared with the batch since it is not used to correct results.

The blank spike (BS) BS1 was an IC trap that was spiked with 50 ng of Hg at the same time the as the spiked trap sent to the client.

Aside from concentration qualifiers, all data was reported without qualification and all associated quality control sample results met the acceptance criteria.

We certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. BRL, an accredited laboratory, certifies that the reported results of all analyses for which BRL is NELAP accredited meet all NELAP requirements. For more details, please see the *Report Information* page in your report. Please feel free to contact us if you have any questions regarding this report.

reaves

Lydia Greaves Project Manager Iydia@brooksrand.com

ma

Mi Sun Um Data Manager misun@brooksrand.com

BRL Report 1407008 Client PM: Gary Hunt Client PO: 200454.0000.0000

Report Information

Laboratory Accreditation

BRL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BRL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksrand.com/default.asp?contentID=586. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

BLK BRL BS CAL CCV COC CRM D DUP	method blank Brooks Rand Labs laboratory fortified blank calibration standard continuing calibration verification chain of custody record certified reference material dissolved fraction duplicate	MS MSD ND PS REC RPD RSD SCV	matrix spike matrix spike duplicate non-detect non-reportable post preparation spike percent recovery relative percent difference relative standard deviation secondary calibration verification
DUP ICV MDL MRL IBL	duplicate initial calibration verification method detection limit method reporting limit instrument blank	SCV SOP SRM T	secondary calibration verification standard operating procedure standard reference material total recoverable fraction

Definition of Data Qualifiers

(Effective 9/23/09)

- **B** Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **E** An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- **H** Holding time and/or preservation requirements not met. Result is estimated.
- J Estimated value. A full explanation is presented in the narrative.
- **J-M** Duplicate precision (RPD) for associated QC sample was not within acceptance criteria. Result is estimated.
- J-N Spike recovery for associated QC sample was not within acceptance criteria. Result is estimated.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Result is estimated.
- **N** Spike recovery was not within acceptance criteria. Result is estimated.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- **U** Result is \leq the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- **X** Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.

These qualifiers are based on those previously utilized by Brooks Rand Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic</u> <u>Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BRL.

BRL Report 1407008 Client PM: Gary Hunt Client PO: 200454.0000.0000

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
B'ville-Hg-2-Pri	1407008-01	IC Trap	Sample	02/07/2014	02/11/2014
B'ville-Hg-2-col	1407008-02	IC Trap	Sample	02/07/2014	02/11/2014
Lucketts-Hg-2	1407008-03	IC Trap	Sample	02/07/2014	02/11/2014
FBB-Hg-1	1407008-04	IC Trap	Field Blank	02/07/2014	02/11/2014

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
Hg	IC Trap	EPA 324/1631 Manual	02/17/2014	02/20/2014	B140197	1400137

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
B'ville-Hg-2-co 1407008-02	b l Hg	IC Trap	NA	1.1	U	1.1	3.3	ng/m³	B140197	1400137
B'ville-Hg-2-P 1407008-01	ri Hg	IC Trap	NA	1.1	U	1.1	3.3	ng/m³	B140197	1400137
FBB-Hg-1 1407008-04	Hg	IC Trap	NA	37.6		1.1	3.3	ng/m³	B140197	1400137
<i>Lucketts-Hg-2</i> 1407008-03	Hg	IC Trap	NA	1.1	U	1.1	3.3	ng/m³	B140197	1400137

Accuracy & Precision Summary

Batch: B140197 Lab Matrix: IC Trap Method: EPA 324/1631 Manual

Sample B140197-BS1	Analyte Laboratory Fortified B	Native Spike lank (1350014)	Result	Units	REC & Limits	RPD & Limits
	Hg	50.00	50.7	ng/m³	101% 80-120	
B140197-BS2	Laboratory Fortified B Hg	lank (1350014) 100.0	107.3	ng/m³	107% 80-120	

Method Blanks & Reporting Limits

Batch: B140197 Matrix: IC Trap Method: EPA 324/1631 Manual Analyte: Hg

Sample	Result	Units		
B140197-BLK1	0.2	ng/m³		
B140197-BLK2	0.08	ng/m³		
B140197-BLK3	0.05	ng/m³		
B140197-BLK4	0.002	ng/m³		
	Average: 0.1		Standard Deviation: 0.1	MDL: 1.1
	Limit: 2.2		Limit: 0.7	MRL: 3.3

BRL Report 1407008 Client PM: Gary Hunt Client PO: 200454.0000.0000

Instrument Calibration

Sequence: 1400137 Instrument: THG-05 Date: 02/20/2014 Analyte: Hg

Total Mercury and Mercury Speciation by CVAFS Method: EPA 324/1631 Manual

True Value	Result 1.8	Units pg of Hg	REC	& Limits
	1.8	pg of Hg		
	2.2	pg of Hg		
	1.7	pg of Hg		
10.00	9.5	pg of Hg	95%	
25.00	24.9	pg of Hg	100%	
100.0	100.4	pg of Hg	100%	
500.0	511.6	pg of Hg	102%	
2500	2514	pg of Hg	101%	
10000	10250	pg of Hg	103%	
1568	1625	pg of Hg	104%	90-110
	3.8	pg of Hg		
1000	1007	pg of Hg	101%	90-110
	2.3	pg of Hg		
	2.1	pg of Hg		
	1.9	pg of Hg		
500.0	505.7	pg of Hg	101%	90-110
	1.9	pg of Hg		
500.0	513.2	pg of Hg	103%	90-110
	1.8	pg of Hg		
	10.00 25.00 100.0 500.0 2500 10000 1568 1000 500.0 500.0 500.0 25.00 10000 500.0 500.0	True ValueResult1.81.82.21.710.009.525.0025.0025.0025.0025.0025.00500.0100.4500.0156816253.8100010072.32.11.9500.0501.0513.21.8	True ValueResultUnits 1.8 $pg of Hg$ 1.8 $pg of Hg$ 2.2 $pg of Hg$ 	$\begin{array}{c cccccc} \mbox{True Value} & \mbox{Result} & \mbox{Units} & \mbox{REC} \\ 1.8 & \mbox{pg of Hg} & \\ 1.8 & \mbox{pg of Hg} & \\ 2.2 & \mbox{pg of Hg} & \\ 2.2 & \mbox{pg of Hg} & \\ 1.7 & \mbox{pg of Hg} & \mbox{95\%} & \\ 25.00 & \mbox{24.9} & \mbox{pg of Hg} & \mbox{100\%} & \\ 100.0 & \mbox{100.4} & \mbox{pg of Hg} & \mbox{100\%} & \\ 100.0 & \mbox{100.4} & \mbox{pg of Hg} & \mbox{100\%} & \\ 500.0 & \mbox{511.6} & \mbox{pg of Hg} & \mbox{102\%} & \\ 2500 & \mbox{2514} & \mbox{pg of Hg} & \mbox{101\%} & \\ 10000 & \mbox{10250} & \mbox{pg of Hg} & \mbox{104\%} & \\ 1568 & \mbox{1625} & \mbox{pg of Hg} & \mbox{104\%} & \\ 1568 & \mbox{1625} & \mbox{pg of Hg} & \mbox{104\%} & \\ 1568 & \mbox{1625} & \mbox{pg of Hg} & \mbox{101\%} & \\ 2.3 & \mbox{pg of Hg} & \mbox{101\%} & \\ 2.3 & \mbox{pg of Hg} & \mbox{101\%} & \\ 1.9 & \mbox{pg of Hg} & \mbox{101\%} & \\ 1.9 & \mbox{pg of Hg} & \mbox{101\%} & \\ 1.9 & \mbox{pg of Hg} & \mbox{103\%} & \\ 1.8 & \mbox{pg of Hg} & \mbox{103\%} & \\ 1.8 & \mbox{pg of Hg} & \mbox{103\%} & \\ \end{array}$

BRL Report 1407008 Client PM: Gary Hunt Client PO: 200454.0000.0000

Sample Containers

Lab II Samp	D: 1407008-01 I le: B'ville-Hg-2-Pri ments: Primary Volume		Re Sa	eport Matrix: IC Trap ample Type: Sample		Collected: 02/07 Received: 02/11		
Des (A I	Container C Trap	Size trap	Lot 09016	Preservation none	P-Lot n/a	рН	Ship. Cont. Cardboard Box	
Lab II Samp Comn	D: 1407008-02 Ile: B'ville-Hg-2-col nents: Collocate Volume		Re Sa	eport Matrix: IC Trap ample Type: Sample		Collecte Receiv	ed: 02/07/2014 ed: 02/11/2014	
Des (A l	Container C Trap	Size trap	Lot 09016	Preservation none	P-Lot n/a	рН	Ship. Cont. Cardboard Box	
Lab II Samp Comn	D: 1407008-03 I le: Lucketts-Hg-2 nents: Volume		Re Sa	eport Matrix: IC Trap ample Type: Sample		Collect Receiv	ed: 02/07/2014 ed: 02/11/2014	
Des (A l	Container C Trap	Size trap	Lot 09016	Preservation none	P-Lot n/a	рН	Ship. Cont. Cardboard Box	
Lab II Samp Comn	D: 1407008-04 I le: FBB-Hg-1 nents: Field Blank		Re Sa	eport Matrix: IC Trap ample Type: Field Blank		Collect Receiv	ed: 02/07/2014 ed: 02/11/2014	
Des (A l	Container C Trap	Size trap	Lot 09016	Preservation none	P-Lot n/a	рН	Ship. Cont. Cardboard Box	

Shipping Containers

Cardboard Box

Received: February 11, 2014 9:48 Tracking No: 521442180948 via FedEx Coolant Type: Blue Ice Temperature: 0.7 °C Description: Cardboard Box Damaged in transit? No Returned to client? No Custody seals present? No Custody seals intact? No COC present? Yes

3958 6th Avenue NW Seattle, WA 98107 Phone: 206-632-6206 Fax: 206-632-6017

Chain of Custody Record

1407008

White: LAB COPY Yellow: CUSTOMER COPY

Page_

of

Client: TRC Environmen Contact: Gary Hunt	tal			Adc 21 C	dress: Griffin F	Road	North							COC If so,	rece by:	ipt co email	onfirm / fa	ation? ax (circ	Y / N le one)
Client project ID: 200454.	0000.0	0000		- vvin	asor, C	ı ا ر								Emai	l:ghu	int@l	trcso	lutions.	com
PO #:				Pho	one #:									Fax #	#:				
Requested TAT in business days:	Colle	ection	М	iscella	aneou	S	Pre	Field serva	tion			Ana	alyses	s requ	<i>iired</i>				Comments
 20 (standard) 15 10 5 Other Surcharges apply for expedited turn around times. 	Ð	0	npler (initials)	rix type	containers	d filtered? (Y/N)	reserved / ice only	/ HNO ₃ (circle one)	er (specify)	al Hg, EPA 1631	hyl Hg, EPA 1630	-MS Metals (specify)	' Se species (specify)	solids	ation	er (specify)	ler (specify)		
Sample ID	Date	Time	Sam	Matr	# of	Field	đun	HCI	Othe	Tota	Met	ICP.	As /	S %	Filt	ð	ð		
1 B'ville-Hg- Z -Pri	1-1-14	16:46	SB							Х								Primary ∨	olume:
2 B'ville-Ha- 2 -Col	2-7-14	16:46	40							Х								Collocate	Volume:
3 Lucketts-Hg- Z	2.7.14	15:42	40							Х								volume:	
4 FBB-Hg-	2-7-14	16:46	47															field blan	<
5	1	1																	
6																			
7	1																		
8		1										ĺ				<u> </u>	ļ		
9					·														•···•
10	. 1.																		
Relinquished by: S. Barleo		Date	2-9-	14	Time	17:0	50	Re	linqu	ished	by:					Date	:		Time:
Received by:		Date		i.	Time:			100 100 100 100 100 100 100 100				w/y	tra.			i D'ave	dik iy		Time: CF/2405
Shipping carrier:			# of	coole	rs:				11.50/5	rk or		x Silis				BRU	୭୮୦)ବ	310. N	

BRL Report 1407008

Sample Calculations

<u>CVAFS</u>

EPA 1631, IC Trap

$$\frac{\frac{CFD}{A} - \frac{BF_d}{A_d}}{I * 1000}$$

C – result produced at the instrument, pg

F – final volume of the sample preparation, mL

D – dilution factor of any dilution of the preparation made at the instrument (*1)

A – analyzed volume of the prep or dilution of the prep, mL

B- the mean of the method blank instrument result, pg

 F_d – default final prep volume for the method used for the method blanks, 40 mL

 A_{d} – default analyzed volume for the method used for the method blanks, 0.1 mL

I – aliquot of sample prepared, g.

ANALYSIS SEQUENCE

Brooks Rand Labs

1400137

Instrument:	THG-05
	1110 00

Lab Number	Batch #	Analysis	Order	STD ID	Source ID	BRL Project #	Due	Comments
1400137-IBL1	1400137	QC	1		-			
1400137-IBL2	1400137	QC	2		-			
1400137-IBL3	1400137	QC	3		-			
1400137-IBL4	1400137	QC	4		-			
1400137-CAL1	1400137	QC	5	1407002	-			
1400137-CAL2	1400137	QC	6	1407003	-			
1400137-CAL3	1400137	QC	7	1407004	-			
1400137-CAL4	1400137	QC	8	1407005	-			
1400137-CAL5	1400137	QC	9	1407006	-			
1400137-CAL6	1400137	QC	10	1407007	-			
1400137-ICV1	1400137	QC	11	1407008	-			
1400137-CCB1	1400137	QC	12		-			
1400137-CCV1	1400137	QC	13	1408017	-			
1400137-CCB2	1400137	QC	14		-			
1400137-CCB3	1400137	QC	15		-			
1400137-CCB4	1400137	QC	16		-			
B140197-BLK1	B140197	QC	17		-			
B140197-BLK2	B140197	QC	18		-			
B140197-BLK3	B140197	QC	19		-			
B140197-BLK4	B140197	QC	20		-			
B140197-BLK5	B140197	QC	21		-			
B140197-BS1	B140197	QC	22		-			
B140197-BS2	B140197	QC	23		-			
1406018-01	B140197	Hg-IC-70:30+BrCl-MerxT	24			TRC-LW1401	2/27/2014	
1406018-02	B140197	Hg-IC-70:30+BrCl-MerxT	25			TRC-LW1401	2/27/2014	
1406018-03	B140197	Hg-IC-70:30+BrCl-MerxT	26			TRC-LW1401	2/27/2014	

ANALYSIS SEQUENCE

BRL Report 1407008

Brooks Rand Labs

1400137

Instrument: THG-05

Lab Number	Batch #	Analysis	Order	STD ID	Source ID	BRL Project #	Due	Comments
1400137-CCV2	1400137	QC	27	1407009	-			
1400137-CCB5	1400137	QC	28		-			
1406018-04	B140197	Hg-IC-70:30+BrCl-MerxT	29			TRC-LW1401	2/27/2014	
1407008-01	B140197	Hg-IC-70:30+BrCl-MerxT	30			TRC-LW1401	3/5/2014	
1407008-02	B140197	Hg-IC-70:30+BrCl-MerxT	31			TRC-LW1401	3/5/2014	
1407008-03	B140197	Hg-IC-70:30+BrCl-MerxT	32			TRC-LW1401	3/5/2014	
1407008-04	B140197	Hg-IC-70:30+BrCl-MerxT	33			TRC-LW1401	3/5/2014	
1400137-CCV3	1400137	QC	34	1407009	-			
1400137-CCB6	1400137	QC	35		-			

SOP(s)/Rev#(s):BR-007 Rev 002

THg Analysis Benchsheet: THg MERX-T

	Sequence:_ 1400137 _		Batches: <u>13140197</u>						
	Analyst: BDT	C	Date: 2/20/14 Instrument ID:						
10 ng,	/mL std ID: 1406030			SnCl2 ID: 14050 26					
1 ng,	/mL std ID: 1406031			NH2OH-HCIID: <u>1406024</u>					
	ICV std ID: 1406032	· ·		Balance ID:					
* all sample vo	lumes are determined volu	metrically unles	s otherwise	noted					
Run# / Pos	DBL Commin ID	Analyze Vol	Dilution	Analysis Comments / for spiked QC:					
#	BRL Sample ID	(mL)	Factor	Source ID, standard ID, and spike volume					
1	Rinse			· · · · · · · · · · · · · · · · · · ·					
2	Rinse			· · · · · · · · · · · · · · · · · · ·					
3	SEQ-IBL1			· · · · · · · · · · · · · · · · · · ·					
4	SEQ-IBL2								
5	SEQ-IBL3								
6	SEQ-IBL4								
7	SEQ-CAL1	0.01		1 ng/mL					
8	SEQ-CAL2	0.025		1 ng/mL					
9	SEQ-CAL3	0.1		1 ng/mL					
10	SEQ-CAL4	0.05		10 ng/mL					
11	SEQ-CAL5	0.25		10 ng/mL					
12	SEQ-CAL6	1		10 ng/mL					
13	SEQ-ICV1	1	· ·	NIST 1641d					
14	SEQ-CCB1								
15	SEQ-CCV	0.05		10 ng/mL double spiked.					
16	SEQ-CCB			• • • • • • • • • • • • • • • • • • •					
17	SEQ-CCB	<u></u>							
18	SEQ-CCB	·							
19	B140197-BLK1	0.1							
20	B140197-BLK2	0.1							
21	B140197-BLK3	0.1							
22	B140197-BLK4	0.1							
23	B140197-BLK5	0.1							
24	B140197-BS1	0.1							

25	B140197-BS2	0.1		
26	1406018-01	0.1		
27	1406018-02	0.1		
28	1406018-03	0.1		
29	SEQ-CCV	0.05		10 ng/mL
30	SEQ-CCB			
31	1406018-04	0.1		
32	1407008-01	0.1		
33	1407008-02	0.1		
34	1407008-03	0.1		
35	1407008-04	0.1		
36	SEQ-CCV	0.05		10 ng/mL
37	SEQ-CCB			
38-				
39				
40				
41				
42			2/14	/if_
43			- Tu	(FI)
44				
45				
46		, ,		
47				
48				

49			
50			
51		 	
52			
53			
54			
55			
56			
57			
58			
59			
60			
61		<u> </u>	/
 62		2/21/	14
 63		 130	T
 64			
 65			
 66			
 67			
 68			
 69			
 70			
 71	· · · · · · · · · · · · · · · · · · ·		
72			

BRL Report 1407008

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 1 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 2 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 3 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 4 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 5 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 6 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 7 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 9 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 10 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 11 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Page 12 of 13 (Peak Report)

Batch Number: B140197 Method Number: CVAFS BR-0007

Project Number(s): 1400137 Instrument ID: THG-05 Date Analyzed: 2/20/14 Analyst Name: BJT

Report of Mercury Analysis IC Traps

Project: 200454.0000.0000 **Samples Collected:** February 27, 2014 **Report Date:** March 27, 2014

Prepared for: Gary Hunt TRC Environmental 21 Griffin Road North Windsor, CT 06095

Brooks Rand Labs Project ID: TRC-LW1401

3958 6th Ave. NW Seattle WA 98107 P: 206-632-6206 F: 206-632-6017 E: brl@brooksrand.com www.brooksrand.com

Table of Contents

Case Narrative
Report Information
Sample Information
Batch Summary5
Sample Results 5
Accuracy & Precision Summary6
Method Blanks & Reporting Limits 6
Instrument Calibration7
Sample Containers
Shipping Containers
Chain-of-Custody Form
Waybill
Sample Calculations
Mercury Data Sequence 1400206, Batch B140366 12

Case Narrative

Shipping and Receiving

On March 4, 2014, Brooks Rand Labs (BRL) received three (3) iodated carbon (IC) traps at 10:00 A.M. in a box with blue ice that had thawed and at ambient temperature. The chain-ofcustody (COC) form requested analysis for total mercury (Hg). The samples were received and stored securely according to BRL standard operating procedures (SOP) and EPA methodology.

Preservation and Holding Time

All method and SOP requirements for preservation and holding time were satisfied.

Total Mercury in IC Traps by EPA Method 324/1631 (SOP BR-0007)

All samples are prepared in accordance with EPA Method 324 and analyzed in accordance with EPA Method 1631. Samples are digested with nitric acid and sulfuric acid at 90°C for 4 hours, oxidized with bromine monochloride (BrCl) and then analyzed with stannous chloride (SnCl₂) reduction, single gold amalgamation, and cold vapor atomic fluorescence spectroscopy (CVAFS) detection using a Brooks Rand Instruments MERX-T CVAFS Mercury Automated-Analyzer.

The results were method blank-corrected as described in the calculations section of the relevant BRL SOP(s) and may have been evaluated using reporting limits that have been adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

Samples were reported on a ng/trap basis.

Samples results that were less than the MDL were qualified **U** and reported at the MDL.

Sequence 1400206

Instrument calibration, meeting all quality control criteria, was successfully achieved on the day of sample analysis.

Batch B140366

Aside from concentration qualifiers, all data was reported without qualification and all associated quality control sample results met the acceptance criteria.

We certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. BRL, an accredited laboratory, certifies that the reported results of all analyses for which BRL is NELAP accredited meet all NELAP requirements. For more details, please see the *Report Information* page in your report. Please feel free to contact us if you have any questions regarding this report.

Lydia Greaves Project Manager Iydia@brooksrand.com

245

Mi Sun Um Data Manager misun@brooksrand.com

BRL Report 1410010 Client PM: Gary Hunt Client PO: 200454.0000.0000

Report Information

Laboratory Accreditation

BRL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BRL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksrand.com/default.asp?contentID=586. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

BLK BRL BS CAL CCV COC CRM D DUP ICV MDL	method blank Brooks Rand Labs laboratory fortified blank calibration standard continuing calibration verification chain of custody record certified reference material dissolved fraction duplicate initial calibration verification method detection limit	MS MSD ND PS REC RPD RSD SCV SOP SRM	matrix spike matrix spike duplicate non-detect non-reportable post preparation spike percent recovery relative percent difference relative standard deviation secondary calibration verification standard operating procedure standard reference material
MDL MRL IBL	method detection limit method reporting limit instrument blank	SRM T	standard reference material total recoverable fraction

Definition of Data Qualifiers

(Effective 9/23/09)

- **B** Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **E** An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- **H** Holding time and/or preservation requirements not met. Result is estimated.
- J Estimated value. A full explanation is presented in the narrative.
- **J-M** Duplicate precision (RPD) for associated QC sample was not within acceptance criteria. Result is estimated.
- J-N Spike recovery for associated QC sample was not within acceptance criteria. Result is estimated.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Result is estimated.
- **N** Spike recovery was not within acceptance criteria. Result is estimated.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- **U** Result is \leq the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- **X** Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.

These qualifiers are based on those previously utilized by Brooks Rand Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic</u> <u>Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BRL.

BRL Report 1410010 Client PM: Gary Hunt Client PO: 200454.0000.0000

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
B'ville-Hg-3-Pri	1410010-01	IC Trap	Sample	02/27/2014	03/04/2014
B'ville-Hg-3-Col	1410010-02	IC Trap	Sample	02/27/2014	03/04/2014
FBB-Hg-2	1410010-03	IC Trap	Field Blank	02/27/2014	03/04/2014

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
Hg	IC Trap	EPA 324/1631 Manual	03/11/2014	03/12/2014	B140366	1400206

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
B'ville-Hg-3-C 1410010-02	Col Hg	IC Trap	NA	3.1	В	1.1	3.3	ng/m³	B140366	1400206
B'ville-Hg-3-F 1410010-01	Pri Hg	IC Trap	NA	1.3	В	1.1	3.3	ng/m³	B140366	1400206
FBB-Hg-2 1410010-03	Hg	IC Trap	NA	1.1	U	1.1	3.3	ng/m³	B140366	1400206

Accuracy & Precision Summary

Batch: B140366 Lab Matrix: IC Trap Method: EPA 324/1631 Manual

Sample B140366-BS1	Analyte I Laboratory Fortified Bla	Native nk (1350	Spike 014)	Result	Units	REC & Limits	RPD & Limits
	Hg	•	100.0	102.6	ng/m³	103% 80-120	
B140366-DUP1	Duplicate (1410010-01) Hg	1.3		1.4	ng/m³		4% 10
B140366-PS1	Post Spike (1410010-01) Hg	1.3	200.0	203.7	ng/m³	101% 85-115	

Method Blanks & Reporting Limits

Batch: B140366 Matrix: IC Trap Method: EPA 324/1631 Manual Analyte: Hg

Sample	Result	Units		
B140366-BLK1	0.3	ng/m³		
B140366-BLK2	0.2	ng/m³		
B140366-BLK3	0.2	ng/m³		
B140366-BLK4	0.2	ng/m³		
	Average: 0.2		Standard Deviation: 0.1	MDL: 1.1
	Limit: 2.2		Limit: 0.7	MRL: 3.3

BRL Report 1410010 Client PM: Gary Hunt Client PO: 200454.0000.0000

Instrument Calibration

Sequence: 1400206 Instrument: THG-05 Date: 03/12/2014 Analyte: Hg

Total Mercury and Mercury Speciation by CVAFS Method: EPA 324/1631 Manual

True Value	Result 2.5	Units pg of Hg	REC	& Limits
	2.0	pg of Hg		
	2.0	pg of Hg		
	2.0	pg of Hg		
10.00	10.0	pg of Hg	100%	
25.00	24.8	pg of Hg	99%	
100.0	100.7	pg of Hg	101%	
500.0	490.9	pg of Hg	98%	
2500	2532	pg of Hg	101%	
10000	10040	pg of Hg	100%	
1568	1628	pg of Hg	104%	90-110
	4.1	pg of Hg		
500.0	500.6	pg of Hg	100%	90-110
	2.8	pg of Hg		
	2.6	pg of Hg		
	2.3	pg of Hg		
500.0	493.8	pg of Hg	99%	90-110
	2.9	pg of Hg		
500.0	486.6	pg of Hg	97%	90-110
	2.3	pg of Hg		
	10.00 25.00 100.0 500.0 2500 10000 1568 500.0 500.0 500.0 500.0 500.0	True Value Result 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 10.00 10.0 25.00 24.8 100.0 100.7 500.0 490.9 2500 2532 10000 10040 1568 1628 4.1 500.0 500.0 500.6 2.8 2.6 2.3 500.0 500.0 493.8 2.9 500.0	True ValueResultUnits 2.5 $pg of Hg2.0pg of Hg25.0024.8pg of Hg100.0100.7pg of Hg25002532pg of Hg1000010040pg of Hg15681628pg of Hg15681628pg of Hg2.8pg of Hg2.6pg of Hg2.6pg of Hg2.3pg of Hg2.9pg of Hg2.9pg of Hg2.3pg of Hg2.3pg of Hgpg of Hg$	$\begin{array}{c ccccc} \mbox{True Value} & \mbox{Result} & \mbox{Units} & \mbox{REC} \\ 2.5 & \mbox{pg of Hg} & \\ 2.0 & \mbox{pg of Hg} & \\ 10.00 & \mbox{10.0} & \mbox{pg of Hg} & \mbox{100\%} \\ 25.00 & \mbox{24.8} & \mbox{pg of Hg} & \mbox{99\%} \\ 100.0 & \mbox{100.7} & \mbox{pg of Hg} & \mbox{101\%} \\ 500.0 & \mbox{490.9} & \mbox{pg of Hg} & \mbox{101\%} \\ 500.0 & \mbox{490.9} & \mbox{pg of Hg} & \mbox{101\%} \\ 10000 & \mbox{10040} & \mbox{pg of Hg} & \mbox{100\%} \\ 1568 & \mbox{1628} & \mbox{pg of Hg} & \mbox{100\%} \\ 1568 & \mbox{1628} & \mbox{pg of Hg} & \mbox{100\%} \\ 1568 & \mbox{1628} & \mbox{pg of Hg} & \mbox{100\%} \\ 500.0 & \mbox{500.6} & \mbox{pg of Hg} & \mbox{100\%} \\ 2.8 & \mbox{pg of Hg} & \mbox{100\%} \\ 2.8 & \mbox{pg of Hg} & \mbox{100\%} \\ 2.8 & \mbox{pg of Hg} & \mbox{100\%} \\ 2.3 & \mbox{pg of Hg} & \mbox{99\%} \\ 500.0 & \mbox{486.6} & \mbox{pg of Hg} & \mbox{97\%} \\ 2.3 & \mbox{pg of Hg} & \mbox{97\%} \\ 2.3 & \mbox{pg of Hg} & \mbox{97\%} \\ \end{array}$

BRL Report 1410010 Client PM: Gary Hunt Client PO: 200454.0000.0000

Sample Containers

Lab Sam	ID: 1410010-01 ple: B'ville-Hg-3-Pri			Report Matrix: IC Trap Sample Type: Sample		Collected: 02/27/2014 Received: 03/04/2014			
Des A	Container IC Trap	Size	Lot	Preservation none	P-Lot n/a	рН	Ship. Cont. Cooler		
Lab Sam	I D: 1410010-02 ple: B'ville-Hg-3-Col			Report Matrix: IC Trap Sample Type: Sample		Collecte Receive	d: 02/27/2014 d: 03/04/2014		
Des A	Container IC Trap	Size	Lot	Preservation none	P-Lot n/a	рН	Ship. Cont. Cooler		
Lab Sam	ID: 1410010-03 ple: FBB-Hg-2			Report Matrix: IC Trap Sample Type: Field Blank		Collecte Receive	d: 02/27/2014 d: 03/04/2014		
Des A	Container IC Trap	Size	Lot	Preservation none	P-Lot n/a	рН	Ship. Cont. Cooler		

Shipping Containers

Cooler

Received: March 4, 2014 10:00 Tracking No: 521452181738 via FedEx Coolant Type: Blue Ice Temperature: ambient Description: Cooler Damaged in transit? No Returned to client? No Custody seals present? No Custody seals intact? No COC present? Yes

BRL Report 1410010

3958 6th Avenue NW Seattle, WA 98107 Phone: 206-632-6206 Fax: 206-632-6017

www.brooksrand.com

samples@brooksrand.com

Chain of Custody Record

Page

of

White: LAB COPY Yellow: CUSTOMER COPY

MEANINGFUL METALS DATA

Client: TRC Environment	onmental Address: 21 Griffin Road North					lorth		COC rece If so, by:					recei by: e	eipt confirmation? Y / N email / fax (circle one)						
Client project ID: 200454.6	1000 0	000		Wind	dsor, C	т		E					Email:ghunt@trcsolutions.com							
	.000.0	000		Pho	Phone #:								Fax #	:	- Cort					
Requested TAT in business days:	Colle	Collection Mi			scellaneous			Field Preservation				Ana	lyses	s requ	ired				Comment	s
20 (standard) 15 10 5 Other Surcharges apply for expedited turn around times. Sample ID	Date $2olf$	Lime	Sampler (initials)	Matrix type	# of containers	Field filtered? (Y/N)	Unpreserved / ice only	HCI / HNO3 (circle one)	Other (specify)	Total Hg, EPA 1631	Methyl Hg, EPA 1630	ICP-MS Metals (specify)	As / Se species (specify)	% Solids	Filtration	Other (specify)	Other (specify)			
1 B'ville-Ha- 3 -Pri	2-27	14:34								x								Primary V	olume:	
2 B'ville-Ha- 3 -Col	227	14:34								X								Collocate	Volume:	
	S-OF-COL	A Draw		1						×								volume:		
4 FBB-Hg- 2	221	14:24																field blank	8	
5		1.1.1																		
6	1																			
7																				
8																-				
9																				
10																1				
Relinquished by: S. Boyluc	2	Date:			Time:	1		Re	linqui	shed	by:					Date	:		Time:	
Received by:		Date:			Time:	:		Re	ceive	d at l	SRL L	SV:	70	X-		Date: 3/4/14 Time: 10 00				
Shipping carrier:			# of	coole	rs:			\$ 5	lb2wo	rk ord	ler ID	: 14	10	310	5	BRL	proje	ct ID: +	-RC-4	01401

Sample Calculations

<u>CVAFS</u>

EPA 1631, IC Trap

$$\frac{\frac{CFD}{A} - \frac{BF_d}{A_d}}{I * 1000}$$

C – result produced at the instrument, pg

F – final volume of the sample preparation, mL

D – dilution factor of any dilution of the preparation made at the instrument (*1)

A – analyzed volume of the prep or dilution of the prep, mL

B- the mean of the method blank instrument result, pg

 F_d – default final prep volume for the method used for the method blanks, 40 mL

 A_{d} – default analyzed volume for the method used for the method blanks, 0.1 mL

I – aliquot of sample prepared, g.

ANALYSIS SEQUENCE

Brooks Rand Labs

1400206

Instrument: THG-05

Lab Number	Batch #	Analysis	Order	STD ID	Source ID	BRL Project #	Due	Comments
1400206-IBL1	1400206	QC	1		-			
1400206-IBL2	1400206	QC	2		-			
1400206-IBL3	1400206	QC	3		-			
1400206-IBL4	1400206	QC	4		-			
1400206-CAL1	1400206	QC	5	1411004	-			
1400206-CAL2	1400206	QC	6	1411005	-			
1400206-CAL3	1400206	QC	7	1411006	-			
1400206-CAL4	1400206	QC	8	1411007	-			
1400206-CAL5	1400206	QC	9	1411008	-			
1400206-CAL6	1400206	QC	10	1411009	-			
1400206-ICV1	1400206	QC	11	1411010	-			
1400206-CCB1	1400206	QC	12		-			
1400206-CCV1	1400206	QC	13	1411011	-			
1400206-CCB2	1400206	QC	14		-			
1400206-CCB3	1400206	QC	15		-			
1400206-CCB4	1400206	QC	16		-			
1410033-01RE1	B140365	Hg-W-BrCl-MERX-TR	17			VSO-QU1101	3/19/2014	Added 3/13/2014 by BJT
1410033-01RE1	B140365	Hg-W-BrCl-MERX-Diss	18			VSO-QU1101	1/1/1980	Added 3/13/2014 by BJT
B140365-MS6	B140365	QC	19		1410033-01RE1			
1410035-13RE1	B140365	Hg-W-BrCl-MERX-Diss	20			E2C-EM1301	3/31/2014	Added 3/13/2014 by BJT
1410027-02RE1	B140365	Hg-W-BrCl-MERX-TR	21			EPR-PA1401	3/18/2014	Added 3/13/2014 by BJT
1400206-CCV2	1400206	QC	22	1411011	-			
1400206-CCB5	1400206	QC	23		-			
B140366-BLK1	B140366	QC	24		-			
B140366-BLK2	B140366	QC	25		-			
B140366-BLK3	B140366	QC	26		-			

ANALYSIS SEQUENCE

BRL Report 1410010

Brooks Rand Labs

1400206

Instrument: THG-05

Lab Number	Batch #	Analysis	Order	STD ID	Source ID	BRL Project #	Due	Comments
B140366-BLK4	B140366	QC	27		-			
B140366-BS1	B140366	QC	28		-			
1410010-01	B140366	Hg-IC-70:30+BrCl-MerxT	29			TRC-LW1401	3/26/2014	
B140366-DUP1	B140366	QC	30		1410010-01			
B140366-PS1	B140366	QC	31		1410010-01			
1410010-02	B140366	Hg-IC-70:30+BrCl-MerxT	32			TRC-LW1401	3/26/2014	
1410010-03	B140366	Hg-IC-70:30+BrCl-MerxT	33			TRC-LW1401	3/26/2014	
1400206-CCV3	1400206	QC	34	1411011	-			
1400206-CCB6	1400206	QC	35		-			

SOP(s)/Rev#(s):BR-0067 Rev 4F,2

THg Analysis Benchsheet: THg MERX-T

Sec	quence:_1400206		Ba		ns B140365, 366
	Analyst:_BJT		Date:	_3/12/14	Instrument ID: THG-0
					UNB 312011
10 ng/mL std II	0:1410072				SnCl2 1D: 1405026
1 ng/mL std il	0:1410073			NH	20H-HCI ID: 1406026
ICV std II	: 1410074_				Balance ID:
* all sample volumes an	e determined volu	metrically unles	s otherwise	e noted	
Run# / Pos		Analyze Vol	Dilution	Analysis	Comments / for spiked QC:
# BR	L Sample ID	*(mL)	Factor	Source ID, s	standard ID, and spike volume
1 Rinse					
2 Rinse				-	
3 SEQ-IB	<u>L1</u>				
4 SEQ-IB	L2				
5 SEQ-IB	L3				
6 SEQ-IB	L4				
7 SEQ-C		0.01		1 ng/mL	
8 SEQ-C/	AL2	0.025		1 ng/mL	·
9 SEQ-C/	4L3	0.1		1 ng/mL	·
10 SEQ-C/	AL4	0.05		10 ng/ml	
11 SEQ-C/	AL5	0.25		10 ng/mi	·
12 SEQ-C/	AL6	1		10 ng/ml	·
13 SEQ-IC	V1	1		NIST 164	
14 SEQ-C0	CB1				
15 SEQ-CO	ČV	0.05		10 ng/ml	
16 SEQ-C0	CB				
17 SEQ-C0	СВ		·		·
18 SEQ-CO	СВ			<u> </u>	
19 14100		2.5	<u> </u>	<u> </u>	
20 B1403	55-MS6	2.5		01RE1 (0.02	 20mL 10ng/mL)
21 14100	35-13RE1	1	†		
22 141002	27-02RE1	1			
23 SEQ-CO	CV	0.05		10 ng/ml	
24 SEQ-C0	CB				

.

•

	•			
25	B140366-BLK1	0.1		
26	B140366-BLK2	0.1		
27	B140366-BLK3	0.1		
 28	B140366-BLK4	0.1		
29	B140366-BS1	0.1		
30	1410010-01	0.1	,	
31	B140366-DUP1	0.1		1410010-01
32	B140366-PS1	0.1		10-01 (0.050mL of 10ng/mL)
33	1410010-02	0.1		
34	1410010-03	0.1		
35	SEQ-CCV	0.05		10 ng/mL
36	SEO-CCB			
50	<u>560</u> 005			
37	V-HCI-I	0.200		VAT TRotting March
 37 37 38	V-HCI-1 1 1 - 2	0.200		VAT TRotting March
 37 37 38 39	$\frac{V-HCI-I}{I-2}$	0.200		VAT Testing March
37 38 39 40	$\frac{V-HCI-I}{I-2}$	0.200		VAT Testing March
30 37 38 39 40 41	$ \frac{V - HCI - I}{I - 2} - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4$	0.200		VAT Testing March
30 37 38 39 40 41 42	$ \frac{V - HCI - I}{I - 2} \\ - 3 \\ - 4 \\ - HN03 - 4 \\ - 7 $	0.200		VAT TRotting March
37 38 39 40 41 42 43	$ \frac{V - HCI - I}{I - 2} \\ \frac{I - 2}{-3} \\ \frac{I - 4}{-4} \\ \frac{I - 4N03 - 4}{-7} \\ \frac{I - 7}{-8} $	0.200		VAT Testing March
37 37 38 39 40 41 42 43 43 44	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	0.200		VAT Testing March
37 37 38 39 40 41 42 43 43 44 45	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	0.200		VAT Testing March
37 37 38 39 40 41 42 43 44 45 46	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	0.200		HAT TROTTing March
37 38 39 40 41 42 43 44 45 46 47	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	0.200		HAT TESting March

49			
50		-	
51			
52			
53			
54	-		
55			
56			
57			
58			
59		21	B
60		$\Box \bigtriangledown \uparrow$	<u>65 —</u>
61			
 62			
63			
64			
65			
66			
67	,		
 68			
69			
70			
71			
 72			

,

.

Prepped By: Batch: BJT B140366 Preparation End Date/Time**: 3/12/14 00920 3/11/14 0 12:30 Preparation Start Date/Time*: * Time is when the first reagents are added. number of number of number of Sample ID Traps Sample ID Traps Sample ID Traps 1 1410010-01 ١ 1410010-02 l 1410010-03 B140366-BLK1 B140366-BLK2 B140366-BLK3 B140366-BLK4 "llolt B140366BS)

Brooks Rand Labs THg IC Trap Prep Benchsheet

Batch QC ID	Spike vol (uL)	Spike ID	standard Concentration	Spike Witness		
	-NIA-	<u></u>		31	이값	
BSI	100	135alt	loodnalml	trj 7.11.1	f	Final Dilution Vol: $40mL$
		CWB 3	12.0114	•	`	

Reagent	ID
2.4mL H2SO4	132 3009
5.6mL HNO3	1350078
35% BrCl	1349009/
	1411021

Comments: Target temp 90°C for 4 hours Thermometer 1D <u>PL-13</u>. Temperature <u>85/84</u>.

Batch Number: B140365, 366 Method Number: CVAFS BR-0006

Project Number(s): 1400206 Instrument ID: THG-05 Date Analyzed: 3/12/14 Analyst Name: BJT

Page 1 of 15 (Peak Report)

Mercury Guru ver 4.6 \odot 18 of 32 1995-2011 Brooks Rand LLC

Batch Number: B140365, 366 Method Number: CVAFS BR-0006

Project Number(s): 1400206 Instrument ID: THG-05 Date Analyzed: 3/12/14 Analyst Name: BJT

Page 2 of 15 (Peak Report)

Mercury Guru ver 4.6 \odot 1995-2011 Brooks Rand LLC

Batch Number: B140365, 366 Method Number: CVAFS BR-0006

Project Number(s): 1400206 Instrument ID: THG-05 Date Analyzed: 3/12/14 Analyst Name: BJT

Batch Number: B140365, 366 Method Number: CVAFS BR-0006

Project Number(s): 1400206 Instrument ID: THG-05 Date Analyzed: 3/12/14 Analyst Name: BJT

Page 4 of 15 (Peak Report)

Batch Number: B140365, 366 Method Number: CVAFS BR-0006

Project Number(s): 1400206 Instrument ID: THG-05 Date Analyzed: 3/12/14 Analyst Name: BJT

Batch Number: B140365, 366 Method Number: CVAFS BR-0006

Project Number(s): 1400206 Instrument ID: THG-05 Date Analyzed: 3/12/14 Analyst Name: BJT

Batch Number: B140365, 366 Method Number: CVAFS BR-0006

Project Number(s): 1400206 Instrument ID: THG-05 Date Analyzed: 3/12/14 Analyst Name: BJT

Page 7 of 15 (Peak Report)

Batch Number: B140365, 366 Method Number: CVAFS BR-0006

Project Number(s): 1400206 Instrument ID: THG-05 Date Analyzed: 3/12/14 Analyst Name: BJT

Batch Number: B140365, 366 Method Number: CVAFS BR-0006

Project Number(s): 1400206 Instrument ID: THG-05 Date Analyzed: 3/12/14 Analyst Name: BJT

Page 9 of 15 (Peak Report)

Batch Number: B140365, 366 Method Number: CVAFS BR-0006

Project Number(s): 1400206 Instrument ID: THG-05 Date Analyzed: 3/12/14 Analyst Name: BJT

Page 10 of 15 (Peak Report) Mercury Guru ver 4.6 ©1995-2011 Brooks Rand LLC

Batch Number: B140365, 366 Method Number: CVAFS BR-0006

Project Number(s): 1400206 Instrument ID: THG-05 Date Analyzed: 3/12/14 Analyst Name: BJT

Page 11 of 15 (Peak Report)

Batch Number: B140365, 366 Method Number: CVAFS BR-0006

Project Number(s): 1400206 Instrument ID: THG-05 Date Analyzed: 3/12/14 Analyst Name: BJT

Page 12 of 15 (Peak Report)

Batch Number: B140365, 366 Method Number: CVAFS BR-0006

Project Number(s): 1400206 Instrument ID: THG-05 Date Analyzed: 3/12/14 Analyst Name: BJT

Page 13 of 15 (Peak Report)

Batch Number: B140365, 366 Method Number: CVAFS BR-0006

Project Number(s): 1400206 Instrument ID: THG-05 Date Analyzed: 3/12/14 Analyst Name: BJT

Page 14 of 15 (Peak Report)

Batch Number: B140365, 366 Method Number: CVAFS BR-0006

Project Number(s): 1400206 Instrument ID: THG-05 Date Analyzed: 3/12/14 Analyst Name: BJT

