MEMORANDUM

PAGE 1 OF 22

DATE: \quad May 5, 2022

TO:
Eric Sideras MCDOT, Traffic Engineering Studies Section

FROM: Kristen Haas, PE, PTOE STV

SUBJECT:
High Injury Networks - Bel Pre Road from MD 182 (Layhill Road) to MD 97 (Georgia Avenue)

Introduction

The Montgomery County Department of Transportation (MCDOT) is planning to build out improvements on the High Injury Networks (HINs) identified in its Vision Zero Two-Year Action Plan. Bel Pre Road from MD 182 (Layhill Road) to MD 97 (Georgia Avenue) was identified as an HIN corridor, as shown in Figure 1. The purpose of this memorandum is to provide a safety evaluation of the Bel Pre Road corridor and to provide recommendations that assist in the goal of eliminating severe injury and fatal crashes.

Figure 1: Study Location

MEMORANDUM

PAGE 2 OF 22

Background Information

The MCDOT Vision Zero Two-Year Action Plan dated November 2017 identifies roadway segments with five or more severe or fatal collisions and one or more collisions per mile per year. The 1.9 mile segment of Bel Pre Road between MD 182 (Layhill Road) and MD 97 (Georgia Avenue) was identified as a High Injury Network based on 5-year crash data from 2012 to 2016. There were ten (10) severe or fatal crashes over the 5year period, with seven (7) vehicular crashes and three (3) pedestrian crashes, which amounts to 1.0 crashes per mile per year within the study segment. This study includes the analysis of serious injury and fatal crashes for January 2012 through December 2014 and minor injury, serious injury, and fatal crashes for January 2015 through February 2020.

The study area is part of the 1994 Aspen Hill Master Plan area. Capacity improvements suggested in the master plan for intersections along the study corridor have already been implemented. Additionally, the segment of Bel Pre Road between Georgia Avenue and Connecticut Avenue was included in the 2019 Aspen Hill Vision Zero Study. This study made the following recommendations:

- Reducing the speed limit on Bel Pre Road from 35 mph to 30 mph between Layhill Road and Georgia Avenue
- Install median refuge islands at the Georgia Avenue at Bel Pre Road and Connecticut Avenue at Bel Pre Road intersections
- Consider protected left turn phasing at the Georgia Avenue at Bel Pre Road and Connecticut Avenue at Bel Pre Road intersections
- Remove channelized right turn lanes at the Georgia Avenue at Bel Pre Road and Connecticut Avenue at Bel Pre Road intersections
- Ensure all sidewalks and sidepaths are unobstructed
- Coordinate with Montgomery County Public Schools to relocate bus stops to residential side streets

A Pedestrian Road Safety Audit (PRSA) was performed in June 2015 for Bel Pre Road between Georgia Avenue and Beaverwood Lane. As a result of the audit, the PRSA team identified a number of suggestions to improve pedestrian and bicycle safety within the study area. MCDOT provided the following recommendations that were suggested as part of the Bel Pre Road PRSA that are still outstanding and should be considered for this study. These recommendations are summarized in Table 1.

MEMORANDUM

PAGE 3 OF 22

Table 1 - Bel Pre Road PRSA Recommended Improvements

Location	Safety Issue	Recommendation
Bel Pre Road at Homecrest Road	Pedestrian Vehicle Conflicts	Evaluate the feasibility of implementing a No Turn on Red restriction for southbound traffic on Homecrest Road to westbound Bel Pre Road.
Bel Pre Road at Homecrest Road	Pedestrian Vehicle Conflicts	Determine the feasibility of moving the bus stop west of Homecrest Road closer to the signalized intersection.
Bel Pre Road at Beaverwood Lane	Pedestrian Facility Issues	Repair the APS/CPS for the west leg crosswalk (crossing Bel Pre Road). The APS in the northwest corner does not emit sound when the pedestrian pushbutton is pressed, or during the walk and flashing don't walk phases. The APS in the southwest corner beeps continuously.
Bel Pre Road at Beaverwood Lane	Pedestrian Facility Issues	Restripe faded transverse crosswalk pavement markings with continental crosswalk markings.
Bel Pre Road at Beaverwood Lane	Pedestrian Facility Issues	Install APS/CPS with applicable signage and signal heads for the north and south leg crosswalks crossing the American Legion driveway and Beaverwood Lane, respectively.
Bel Pre Road between Georgia Avenue and Connecticut Avenue	Pedestrian Vehicle Conflicts	Coordinate with the Montgomery County Police Department to ensure appropriate levels of enforcement of posted speed limits.
Bel Pre Road between Georgia Avenue and Connecticut Avenue	Pedestrian Vehicle Conflicts	Evaluate the feasibility of lane width reductions on Bel Pre Road from just east of Georgia Avenue to Layhill Road to slow vehicles.
Bel Pre Road between Georgia Avenue and Connecticut Avenue Avenue and Connecticut Avenue	Pedestrian Facility Issues	Evaluate the feasibility of relocating utility poles outside of the sidewalk area.
	Redesign pedestrian refuge islands in the median of Bel Pre Road at Tynewick Drive and Dunsinane Drive to provide a pedestrian crossing cutout of 10 feet through the median. Also, redesign concrete medians on Tynewick Drive and Dunsinane Drive such that the medians are pulled back out of the pedestrian crossing paths, thus providing 10 feet of space for pedestrians to cross.	

It should be noted that the three Rectangular Rapid Flashing Beacons (RRFB's) within the study area were replaced with pedestrian hybrid beacons in August 2021.

The following is a summary of the corridor-wide police-reported crash history provided by MCDOT for serious injury and fatal crashes for January 2012 through December 2014 and minor injury, serious injury, and fatal crashes for January 2015 through February 2020. This crash data was reviewed to evaluate patterns and trends to assist in determining appropriate safety recommendations for the corridor. There were 86 serious or minor injury crashes and no fatalities over the study period. Of the 86 police-reported crashes, 48 were listed as

MEMORANDUM

PAGE 4 OF 22
intersection or intersection related crashes. The crash locations are shown in Figure 2 and the crash data is provided in Appendix \mathbf{A}.

There were 14 serious injury crashes over the study period occurring throughout the corridor. Four of the serious injury crashes involved pedestrians at unsignalized locations. Three of the four pedestrian crashes occurred under dark conditions. The contributing circumstance was only available for two of the four pedestrian crashes. One of the two pedestrian crashes was attributed to an improper action by the pedestrian and a vision obstruction (blinded by the sun) while the other was attributed to the pedestrian failing to yield right of way as well as dark clothing that was not visible to the driver. The remaining serious injury crashes involved three angle collisions, three single vehicle collisions, two rear end collisions, and two left turn collisions.

The following figures summarize the crash trends along the corridor. It's important to reiterate that the crash data received for 2012 through 2014 only includes serious injury and fatal police-reported crashes.

Figure 2: Crash Locations (2012-2019)

MEMORANDUM

PAGE 6 OF 22

Figure 3 summarizes the crash data for the study corridor by year.

Figure 3: Vehicular and Pedestrian Crash Frequency by Year (2012-2019)
As shown above, vehicular crashes that resulted in minor or serious injuries occurred most frequently during 2015 and 2016. The number of ped/bike crashes slowly increased over the study period with the exception of 2014 and 2018, where zero ped/bike crashes were reported.

Figure 4 summarizes the relationship between vehicular peak hours and injury crashes.

Figure 4: Injury Crashes by Time of Day (2012-2019)
As shown above, the greatest number of injury crashes occurred during the midday peak period with 31 crashes (36\%). During the AM and PM peak periods, 15 (17%) and 17 (20\%) crashes were reported, respectively.

MEMORANDUM

PAGE 7 OF 22

Figure 5 summarizes the injury crashes by illumination level.

Figure 5: Injury Crashes by Illumination Level (2012-2019)
As shown above, 52 of the 86 reported injury crashes (60%) occurred under daylight conditions. Twenty seven injury crashes (31%) occurred during dark conditions while seven crashes (9%) occurred during dusk or dawn. None of the reported crashes listed lighting levels as a contributing circumstance.

Figure 6 summarizes the injury crashes by type.

Figure 6: Injury Crashes by Collision Type (2012-2019)

MEMORANDUM

PAGE 8 OF 22

As shown above, the highest number of injury crashes were rear end crashes, resulting in 26 reported crashes (30%) during the study period. Of the 26 reported rear end crashes, two were identified as serious injury crashes while the remaining 24 crashes were identified as minor injury crashes. Other predominant collision types include left turn (24%), pedestrian/bicyclist (20%), and angle (15%). Seven of the 26 rear end crashes occurred at the intersection of Bel Pre Road at Connecticut Avenue while eight of the 19 left turn crashes occurred at the intersection of Bel Pre Road at Layhill Road.

Observations

Field observations were obtained from the Bel Pre Road PRSA. The PRSA was conducted during day and evening hours and included weekday morning, midday, and evening peak hour observations from Tuesday June 2, 2015 and Wednesday June 3, 2015. It should be noted that the PRSA limits consisted of Bel Pre Road between Georgia Avenue and Beaverwood Lane. Additional weekday morning and evening peak period field observations were conducted for the full study corridor on September 15, 2020. The following summarizes the field observations and relates it to the crash data shown in Figure 2 where applicable.

- Some vehicular speeds on Bel Pre Road between Georgia Avenue and Connecticut Avenue appeared greater than the posted speed limit of 35 mph .
- A majority of pedestrians crossing Bel Pre Road were observed crossing at locations with marked crosswalk. A few pedestrians, however, were observed crossing Bel Pre Road outside of marked crosswalks, particularly on the western half of the corridor. Of the pedestrians observed crossing at the RRFB locations, almost all were observed activating the RRFB. It should be noted, however, that pedestrian hybrid beacons were being designed for these crossings at the time observations were conducted and were later constructed in August 2021.
- Vehicles on Grand Pre Drive had a difficult time turning left onto Bel Pre Road given a sight distance issue with vehicles coming from the west as well as high vehicle speeds on Bel Pre Road.
- One angle crash was reported at the intersection during the study period.
- Vehicles were observed frequently changing lanes in order to pass vehicles slowing down to make right turns. This was most commonly observed between Georgia Avenue and Connecticut Avenue, where speeds were typically highest.
- There are automatic speed enforcement cameras for east- and westbound Bel Pre Road approaching the Winchester School.
- Two rear end crashes occurred on westbound Bel Pre Road and one rear end crash occurred on eastbound Bel Pre Road near the automatic speed enforcement cameras.
- Vehicles were observed slowing down in advance of the cameras.
- Existing lighting levels along Bel Pre Road do not appear sufficient.
- Thirty two percent of reported crashes occurred during dark conditions while seven percent occurred during dusk or dawn.

In addition to the observations mentioned above, a safety assessment for Argyle Middle School located near Layhill Road was conducted in 2015. The assessment referenced queuing from the parent drop off loop spilling back onto Bel Pre Road. Eight pedestrian crashes were reported in the vicinity of Argyle Middle School, two of which appear to involve students during the school's arrival period. It should be noted that both crashes occurred at the RRFB south of the Argyle Middle School and the students activated the RRFB in both instances. Further, both of these crashes were attributed to the driver not giving full time and attention.

MEMORANDUM

PAGE 9 OF 22

Corridor Bus Data

Within the study limits, there are 12 eastbound and 11 westbound bus stops along Bel Pre Road. These bus stops service both Ride On routes 26, 34, 41, 49, and 51 and WMATA route L8. The locations of the study area bus stops are shown in Figure 7. Average daily ridership data for Fall 2019 (pre-COVID 19) was provided by MCDOT's Division of Transit Services and WMATA. A review of the data indicated that daily boardings and alightings by stop varied widely throughout the study area (See Table 2), with the highest total ridership occurring at the westbound Bel Pre Road at Weeping Willow Drive bus stop. Several bus stops have low average ridership, including the bus stops in both directions at Beaverwood Lane and at Rippling Brook Drive.

Table 2 - Bus Ridership Data

Location	Stop ID	Routes		Average Boardings	Average Alightings
		Ride On	WMATA		
Eastbound					
BEL PRE RD \& GEORGIA AVE	29084	49	-	21	76
BEL PRE RD \& GRAND PRE RD	Ride On: 20280 WMATA: 2000916	$\begin{gathered} 34,41, \\ 49 \end{gathered}$	L8	99	53
BEL PRE RD \& DUNSINANE DR	Ride On: 20282 WMATA: 2000920	$\begin{gathered} 34,41 \\ 49 \end{gathered}$	L8	87	31
BEL PRE RD \& CONNECTICUT AVE	29086	34, 41,	-	32	44
BEL PRE RD \& PEARTREE LN	20284	26, 49	-	51	45
BEL PRE RD \& WEEPING WILLOW DR	20286	26, 49	-	106	86
BEL PRE RD \& HOMECREST RD	29088	49	-	23	24
BEL PRE RD \& BEAVERWOOD LN	29090	49	-	13	12
BEL PRE RD \& RIPPLING BROOK DR	29092	49, 51	-	6	15
BEL PRE RD \& NORTH GATE DR	29094	49, 51	-	20	25
BEL PRE RD \& PARKER FARM WAY	29096	49, 51	-	38	118
BEL PRE RD \& LAYHILL RD	29998	49	-	1	39
Westbound					
BEL PRE RD \& LAYHILL RD	20288	49, 51	-	38	37
BEL PRE RD \& PLAZA DEL MERCADO	20290	49, 51	-	147	57
BEL PRE RD \& NORTH GATE DR	20292	49, 51	-	32	20
BEL PRE RD \& RIPPLING BROOK DR	20294	49	-	13	10
BEL PRE RD \& BEAVERWOOD LN	29100	49	-	9	11
BEL PRE RD \& HOMECREST RD	20296	26,49	-	55	41
BEL PRE RD \& WEEPING WILLOW DR	20298	26, 49	-	87	131
BEL PRE RD \& CONNECTICUT AVE	29102	49	-	31	56
BEL PRE RD \& DUNSINANE DR	29972	49	-	11	38
BEL PRE RD \& TYNEWICK DR	29974	49	-	45	42
BEL PRE RD \& GEORGIA AVE	29104	49	-	83	26

FIGURE 7 - BUS RIDERSHIP

MEMORANDUM

PAGE 11 OF 22

Speed Data

Speed data was collected for 48 -hours in March 2022 for the following locations on Bel Pre Road:

- Approximately 250 feet west of Grand Pre Road
- Approximately 900 feet east of Beaverwood Lane

Average and $85^{\text {th }}$ percentile speeds are summarized in Table $\mathbf{3}$ and the raw speed data is provided in Appendix B.

Table 3 - Speed Data Summary

Location	Eastbound	Westbound			
		Average Speed (MPH)	$85^{\text {th }}$ Percentile Speed (MPH)	Average Speed (MPH)	85 Percentile Speed (MPH)
Bel Pre Road west of Grand Pre Road	35	32	37	35	40
Bel Pre Road east of Beaverwood Lane	35	38	44	40	45

The speed data shows that west of Grand Pre Road, the average and $85^{\text {th }}$ percentile speeds are 32 and 37 MPH in the eastbound direction and 35 and 40 MPH in the westbound direction, respectively. The recorded speeds within 5 MPH of the posted speed limit of 35 MPH . East of Beaverwood Lane, the average and $85^{\text {th }}$ percentile speeds are 38 and 44 MPH in the eastbound direction and 40 and 45 MPH in the westbound direction, respectively. Given that the $85^{\text {th }}$ percentile speeds are more than $9-10 \mathrm{MPH}$ over the posted speed limit of 35 MPH, speeding relative to the posted speed limit is more pronounced along this segment of Bel Pre Road.

The speed data summarized above was used to help determine the appropriate speed limit for Bel Pre Road utilizing the Federal Highway Administration's USLIMITS2 tool, which is a web based tool used to assist in setting reasonable, safe, and consistent speed limits for specific segments of roads. The USLIMITS2 tool considers roadway characteristics including, but not limited to, AADT, operating speeds, geometric conditions, crash and injury rates, and pedestrian and bicycle activity. It should be noted, however, that the speed limit analysis required a summary of injury and non-injury crashes. Since the crash analysis for this study only captured minor injury, severe injury, and fatality crashes, data for all crash types including injury and property damage only crashes was obtained from the dataMontgomery website for the January 2015 - December 2019 study period. The results of the USLIMITS2 speed limit analysis indicate that the recommended speed limit for Bel Pre Road west of Grand Pre Road is $\mathbf{3 5} \mathbf{~ M P H}$, while the recommended speed limit east of Beaverwood Lane is $\mathbf{4 0}$ MPH. Outputs from the USLIMITS2 analysis are provided in Appendix C. It should be noted that no posted speed limit change is recommended at this time.

Pedestrian Hybrid Beacon Analysis

Signal Warrant Analysis

At the request of MCDOT, the need for a pedestrian hybrid beacon, also known as a High Intensity Activated Crosswalk (HAWK) beacon, was evaluated for Bel Pre Road at the intersection of St. Matthew Church Driveway/Crystal Springs Driveway. A pedestrian hybrid beacon warrant was performed for this location

MEMORANDUM

PAGE 12 OF 22
according to procedures outlined in the 2009 MUTCD. It should be noted that the 2011 MdMUTCD prohibited the use of pedestrian hybrid beacons; however, the use of these beacons received interim approval for use in Maryland in November 2017. The guidelines state:

For a major street where the posted or statutory speed limit or the $85^{\text {th }}$ percentile speed is 35 mph or less, the need for a pedestrian hybrid beacon should be considered if the engineering study finds that the plotted point representing the vehicles per hour on the major street (total of both approaches) and the corresponding total of all pedestrians crossing the major street for 1 hour (any four consecutive 15-minute periods) of an average day falls above the applicable curve in Figure 4F-1 for the length of the crosswalk.

For a major street where the posted or statutory speed limit or the $85^{\text {th }}$ percentile speed exceeds 35 mph, the need for a pedestrian hybrid beacon should be considered if the engineering study finds that the plotted point representing the vehicles per hour on the major street (total of both approaches) and the corresponding total of all pedestrians crossing the major street for 1 hour (any four consecutive 15-minute periods) of an average day falls above the applicable curve in Figure 4F-2 for the length of the crosswalk

For crosswalks that have lengths of other than the four that are specifically shown in Figure 4F-1 and F4-2, the values should be interpolated between the curves.

Based on the speed data collected just west of Grand Pre Road, it is assumed that $85^{\text {th }}$ percentile speeds are higher than 35 mph at this intersection. Thus, Figure F4-2 was used for this warrant and is shown in Figure 8 below. It should be noted, however, that both graphs utilize the same minimum threshold of 20 pedestrians per hour to warrant a pedestrian hybrid beacon.

Figure 8: Pedestrian Hybrid Beacon Warrant Guidelines

MEMORANDUM

PAGE 13 OF 22

In order to complete the pedestrian hybrid beacon warrant, a 13 -hour vehicular and pedestrian count was performed on Wednesday March 2, 2022 and is provided in Appendix D. The count data indicates that the highest hourly volume of pedestrians crossing Bel Pre Road at this location is nine pedestrians per hour, thus not meeting the 20 pedestrians per hour threshold shown in Figure 8. It should be noted, however, that the presence of a pedestrian hybrid beacon would likely increase the number of pedestrians crossing Bel Pre Road at this location due to the adjacent bus stops on east- and westbound Bel Pre Road (with a total of 104 daily boardings and 102 daily alightings for both stops combined), along with the close proximity of several apartment complexes and St. Matthew Church.

Capacity Analysis

A capacity analysis was performed utilizing Synchro software to determine potential impacts associated with the implementation of a pedestrian hybrid beacon at the St. Matthew Church Driveway/Crystal Springs Driveway intersection. MCDOT provided an existing conditions Synchro model with peak hour volumes for the intersection of MD 97 at Bel Pre Road, to which the St. Matthew Church/Crystal Springs Driveway intersection was added. The March 2022 turning moment count for the proposed pedestrian hybrid beacon location was used for this analysis and balanced to the MD 97 at Bel Pre Road intersection volumes at the direction of MCDOT. The resultant AM and PM peak hour volumes are shown in Figure 9.

AM (PM) Peak Hour Vehicular Volumes
AM (PM) Peak Hour Pedestrian Volumes
Figure 9: AM and PM Peak Hour Volumes
It should be noted that pedestrian hybrid beacons cannot be explicitly modeled in Synchro due to limitations of the software. However, the operational impacts of a pedestrian hybrid beacon can be approximated by

MEMORANDUM

PAGE 14 OF 22
modeling a modified full traffic signal. The pedestrian hybrid beacon was approximated using the following assumptions:

- A traffic signal was placed just east of St. Matthew Church/Crystal Springs Driveway (with the understanding that the pedestrian hybrid beacon would actually control vehicular traffic on both the eastbound and westbound approaches of Bel Pre Road in the field).
- The signal was set to uncoordinated control, with the Bel Pre Road vehicular phases set to Max Recall.
- The pedestrian phase was set to No Recall and the pedestrian calls per hour was set to the number of pedestrians crossing the east and west legs of Bel Pre Road shown in Figure 9.
- The total length of the pedestrian phase was set assuming a 7 second Walk interval and the required Flashing Don't Walk time based on a pedestrian walking speed of 3.5 feet per second.

The capacity results for the existing and proposed conditions are summarized in Table 4. Synchro outputs are provided in Appendix E.

MEMORANDUM

PAGE 15 OF 22

Table 4 - Capacity Analysis Results

Intersection	Movement	Existing Conditions				Proposed Pedestrian Hybrid Beacon			
		AM Peak Hour		PM Peak Hour		AM Peak Hour		PM Peak Hour	
		Delay (S)	LOS						
MD 97 at Bel Pre Road	Overall	59.3	E	55.5	E	59.3	E	55.5	E
	EBL	70.6	E	62.1	E	70.6	E	62.1	E
	EBT	72.3	E	73.1	E	72.3	E	73.1	E
	EBR	-	-	-	-	-	-	-	-
	WBL	118.5	F	59.2	E	118.5	F	59.2	E
	WBT	84.0	F	67.3	E	84.0	F	67.3	E
	WBR	-	-	-	-	-	-	-	-
	NBL	101.3	F	94.8	F	101.3	F	94.8	F
	NBT	27.8	C	51.4	D	27.8	C	51.4	D
	NBR	-	-	-	-	-	-	-	-
	SBL	91.5	F	98.0	F	91.5	F	98.0	F
	SBT	47.6	D	34.7	C	47.6	D	34.7	C
	SBR	-	-	-	-	-	-	-	-
Bel Pre Road at St. Matthew Church Driveway/Crystal Springs Driveway	Overall	<5	A	<5	A	$<5^{1}$	A	$<5^{1}$	A
	EBL	10.5	B	8.6	A	10.5^{1}	B	$8.6{ }^{1}$	A
	EBTR	<5	A	<5	A	$<5^{1}$	A	$<5^{1}$	A
	WBL	8.4	A	10.1	B	8.4^{1}	A	10.1^{1}	B
	WBTR	<5	A	<5	A	$<5^{1}$	A	$<5^{1}$	A
	NBLTR	26.7	D	31.1	D	$26.4{ }^{1}$	D	$30.4{ }^{1}$	D
	SBLTR	39.7	E	<5	A	$39.7{ }^{1}$	E	$<5^{1}$	A

Notes: HCM 6th edition excludes delay for the channelized right turns from calculations of approach delay and intersection delay.
${ }^{1}$ Pedestrian hybrid beacons can be approximated, but not explicitly modeled, at intersections using Synchro software. As a result, mainline eastbound and westbound Bel Pre Road movement delays for the proposed condition (with pedestrian hybrid beacon) at St. Matthew Church Driveway/Crystal Springs Driveway may be greater than shown in Table 4. In contrast, northbound and southbound access driveway movement delays may be less than shown in Table 4.

The results in Table 4 indicate that under existing conditions, the intersection of MD 97 at Bel Pre Road operates at LOS E during the AM and PM peak hours, while the intersection of Bel Pre Road at St. Matthew Church Driveway/Crystal Springs Driveway operates at LOS A during the AM and PM peak hours. Synchro also indicates that the intersections continue to operate at LOS E and LOS A, respectively, with the installation of the proposed pedestrian hybrid beacon. Movement delays are also similar with the proposed pedestrian hybrid beacon, with all delays being within one second of those experienced under existing conditions. However, the LOS and delay results for the Bel Pre Road at St. Matthew Church Driveway/Crystal Springs Driveway intersection under the proposed pedestrian hybrid beacon condition should be interpreted with care, as they are based on a modeled approximation of a pedestrian hybrid beacon. The approximation involved modeling a full signal just east of St. Matthew Church Driveway/Crystal Springs Driveway, to allow for the

MEMORANDUM

PAGE 16 OF 22

northbound Crystal Springs Driveway and southbound St. Matthew Church Driveway approaches to remain under stop sign control for the analysis (as they would be if a Pedestrian Hybrid Beacon was implemented at this intersection). As a result, it is possible that mainline eastbound and westbound Bel Pre Road movement delays under the proposed condition would be greater than shown in Table 4. In contrast, northbound and southbound St. Matthew Church Driveway/Crystal Springs Driveway movement delays may be less than shown in Table 4. An examination of the vehicular queuing results in the following section complements the capacity analysis results, providing a more complete picture of the operational impacts expected with a pedestrian hybrid beacon.

Queuing Analysis

A queuing analysis was performed utilizing SimTraffic software to determine potential queuing impacts associated with the proposed pedestrian hybrid beacon. The average of five simulation runs are summarized in Table 5. SimTraffic outputs are provided in Appendix F.

Table 5 - Queuing Analysis Results

Intersection	Movement	Storage Length ${ }^{1}$ (ft)	Existing Conditions				Proposed Pedestrian Hybrid Beacon			
			AM Peak Hour		PM Peak Hour		AM Peak Hour		PM Peak Hour	
			$\begin{gathered} \text { Avg } \\ \mathrm{Q}(\mathrm{ft}) \end{gathered}$	$\begin{aligned} & \text { 95th } \\ & \text { Q (ft) } \end{aligned}$	$\begin{gathered} \mathrm{Avg} \\ \mathrm{Q}(\mathrm{ft}) \end{gathered}$	$\begin{aligned} & \text { 95th } \\ & \text { Q (ft) } \end{aligned}$	$\begin{gathered} \text { Avg } \\ \mathrm{Q}(\mathrm{ft}) \end{gathered}$	$\begin{aligned} & \text { 95th } \\ & \text { Q (ft) } \end{aligned}$	$\begin{gathered} \text { Avg } \\ \text { Q (ft) } \end{gathered}$	$\begin{aligned} & \text { 95th } \\ & \text { Q (ft) } \end{aligned}$
MD 97 at Bel Pre Road	EBL	180	125	200	175	250	125	200	175	250
	EBT	790	125	200	625	1,000	125	250	550	950
	EBR	240	25	150	50	225	25	150	25	150
	WBL	295	250	375	150	275	250	375	125	275
	WBT	290	200	325	125	250	200	325	125	225
	WBR	150	75	225	25	150	100	225	25	125
	NBL ${ }^{2}$	675/400	125	200	200	375	125	200	200	375
	NBT	1,915	175	300	325	575	175	325	350	600
	NBR	200	<25	25	100	275	<25	<25	125	300
	SBL ${ }^{2}$	525/300	150	500	225	425	150	500	200	350
	SBT	> 2,500	525	750	200	400	525	800	200	375
	SBR	40	50	75	50	75	50	75	25	75
Bel Pre Road at St. Matthew Church Driveway/Crystal Springs Driveway	EBL	150	<25	25	<25	<25	<25	<25	<25	<25
	EBTR	305	<25	<25	<25	25	<25	50	25	125
	WBL	95	<25	25	<25	25	<25	50	<25	50
	WBTR	515	25	125	<25	25	100	375	25	100
	NBLTR	455	50	75	25	75	50	125	25	75
	SBLTR	240	<25	25	<25	<25	<25	25	<25	<25

1 - Storage length based on distance to the nearest upstream intersection
2 - Dual left turn lane with varying widths
The results of the queuing analysis indicate that the $95^{\text {th }}$ percentile queues for the following movements at the MD 97 at Bel Pre Road intersection extend beyond the available storage distance under existing conditions:

MEMORANDUM

PAGE 17 OF 22

- Eastbound left turn (AM and PM peak hours)
- Eastbound through (PM peak hour)
- Westbound left turn (AM peak hour)
- Westbound through (AM peak hour)
- Westbound right turn (AM peak hour)
- Northbound right turn (PM peak hour)
- Southbound right turn (AM and PM peak hours)

These movements continue to exceed the available storage distance under proposed conditions but are not otherwise significantly impacted by the pedestrian hybrid beacon. At the St. Matthew Church/Crystal Springs intersection, queues do not exceed the available storage distance under existing or proposed conditions. It should be noted, however, that with the implementation of a pedestrian hybrid beacon, the westbound $95^{\text {th }}$ percentile through queue is projected to increase from 125 to 375 feet during the AM peak hour and from 25 to 100 feet during the PM peak hour, while the northbound $95^{\text {th }}$ percentile queue is projected to increase from 75 to 125 during the AM peak hour and remain comparable to existing conditions during the PM peak hour. In the eastbound direction, eastbound $95^{\text {th }}$ percentile through queues increase from <25 to 50 feet during the AM peak hour and from <25 to 125 feet during the PM peak hour, indicating that the pedestrian hybrid beacon is not anticipated to impact the MD 97 at Bel Pre Road intersection.

Summary of Suggested Improvements

Based on field observations and available crash data, the following improvements are recommended for consideration to address safety issues on the study corridor. It should be noted that a number of the recommendations below will need to be coordinated with the appropriate third parties, including but not limited to, Maryland Department of Transportation State Highway Administration (MDOT SHA), WMATA, MTA, and Montgomery County Public Schools. The improvements are compiled and summarized in Table 6 below. A concept plan showing several of the recommended improvements is provided in Appendix G.

Table 6 - Recommended Improvements

Location	Observation/Issue	Recommendation	Timeframe
Bel Pre Road at Georgia Avenue	Seven of fifteen crashes that occurred at the Georgia Avenue intersection were rear end crashes. Five of the seven crashes occurred on the Georgia Avenue approaches.	Evaluate the current yellow change and all red clearance intervals for Bel Pre Road and Georgia Avenue and update timings if necessary.	Short
Bel Pre Road at	Two of the fifteen crashes that Georgia Avenue interrection involved pedestrians.	Update crosswalks with continental style pavement markings. See Appendix G for the proposed pavement markings.	Short

MEMORANDUM

PAGE 18 OF 22

Location	Observation/Issue	Recommendation	Timeframe
Bel Pre Road at Dunsinane Drive	A serious pedestrian crash was reported at the midblock crosswalk just west of Dunsinane Drive.	Consider installing an advance pedestrian crossing sign along eastbound Bel Pre Road, similar to what is provided for westbound Bel Pre Road, to warn motorists of the upcoming midblock crossing.	Short
Bel Pre Road at Connecticut Avenue	Seven of the seventeen crashes that occurred at the Connecticut Avenue intersection were rear end crashes. All seven of the crashes occurred on the Bel Pre Road approaches. Five occurred in the westbound direction and two occurred in the eastbound direction.	Evaluate the current yellow change and all red clearance intervals for Bel Pre Road and update timings if necessary.	Short
Bel Pre Road at Homecrest Road	Pedestrians were observed crossing the west leg between the bus stop on the north side of Bel Pre Road and the residential community on the south side.	Evaluate the feasibility of implementing a No Turn on Red restriction for southbound traffic on Homecrest Road to westbound Bel Pre Road.	Short
Bel Pre Road at Homecrest Road	Pedestrians were observed crossing the west leg between the bus stop on the north side of Bel Pre Road and the residential community on the south side.	Determine the feasibility of moving the bus stop west of Homecrest Road closer to the signalized intersection.	Short
Bel Pre Road at Beaverwood Lane	The APS in the northwest corner does not emit sound when the pedestrian pushbutton is pressed, or during the walk and flashing don't walk phases. The APS in the southwest corner beeps continuously.	Repair the APS/CPS for the west leg crosswalk.	Short
Bel Pre Road at Beaverwood Lane	Crosswalk markings are faded.	Restripe faded transverse crosswalk pavement markings with continental crosswalk markings. See Appendix G for the proposed pavement markings.	Short
Bel Pre Road east of Rippling Brook Drive	There is overgrown vegetation encroaching on the sidewalk on the north side of Bel Pre Road east of Rippling Brook Drive	Trim foliage encroaching on sidewalk.	Short

MEMORANDUM

PAGE 19 OF 22

Location	Observation/Issue	Recommendation	Timeframe
Throughout	Vehicular speeds are significantly greater than the posted speed limit, particularly between Georgia Avenue and Connecticut Avenue.	Consider installing raised medians within stretches of the existing two way left turn lane to reduce travel speeds. See Appendix G for potential locations.	Long
Bel Pre Road at Connecticut Avenue	Four of the seventeen crashes that occurred at the Connecticut Avenue intersection were left turn crashes. Two of the left turn crashes occurred in the northbound direction, one occurred in the southbound direction, and one occurred in the eastbound direction.	Evaluate the traffic impacts associated with implementing exclusive/permissive left turn phasing in the northbound direction.	Intermediate
Bel Pre Road at Beaverwood Lane	There are no pedestrian signal heads for the south leg crosswalk.	Install APS/CPS pedestrian signal heads with applicable signage for the south leg crosswalk.	Intermediate
Bel Pre Road at Parker Farm Way	There were two pedestrian related crashes reported during the study period at the intersection of Bel Pre Road at Parker Farm Way. Both crashes involved vehicles making the southbound left turn from Parker Farm Way onto eastbound Bel Pre Road colliding with pedestrians in the east leg crosswalk	Evaluate the traffic impacts associated with implementing exclusive/permissive left turn phasing in the southbound direction.	Intermediate
Eight of the fourteen crashes that occurred at the Layhill Road intersection were left turn crashes. Three of these crashes involved vehicles traveling in the southbound direction, two involved vehicles traveling in the north- and westbound directions, and one involved a vehicle traveling in the eastbound direction.	Evaluate the traffic impacts associated with implementing exclusive left turn phasing in all directions.	Intermediate	
Thirty one percent of reported crashes occurred during dark conitions while nine percent occurred during dusk or dawn. An existing photometrics lighting analysis was conducted in 2016 and identified deficient lighting conditions.	Conduct further analysis to determine lighting improvements required to meet Illuminating Engineering Society (IES) recommended levels throughout the corridor.	Long	
Layhill Road at			

MEMORANDUM

PAGE 20 OF 22

Location	Observation/Issue	Recommendation	Timeframe
Throughout	Vehicular speeds are significantly greater than the posted speed limit, particularly between Georgia Avenue and Connecticut Avenue.	Evaluate the feasibility of lane width reductions on Bel Pre Road from just east of Georgia Avenue to Layhill Road to slow vehicles. See Appendix G for the proposed lane width reduction concept design.	Long
Bel Pre Road at Georgia Avenue	Two of the fifteen crashes that occurred at the Georgia Avenue intersection involved pedestrians.	Consider installing pedestrian refuge medians on all legs of the Georgia Avenue at Bel Pre Road intersection, and pedestrian pushbuttons on all median refuge islands that do not have pedestrian recall phasing. See Appendix G for the proposed pedestrian refuge medians.	Long
Bel Pre Road at Georgia Avenue	There is the potential for higher speed vehicular turning movements due to the channelized rights on all four corners combined with marked crosswalks across all four channelized turn lanes.	Determine the feasibility of removing the channelized right turn lanes. Alternatively, consider the installation of a treatment such as a truck apron/traversable curb bump out that encourages slower turning speeds for vehicles. See Appendix G for potential channelized right turn treatments for the Georgia Avenue intersection.	Long
Bel Pre Road at St. Matthew Church Driveway/Crystal Springs Apartments Driveway	Pedestrians were observed crossing outside of marked crosswalks, particularly in the western portion of the corridor.	Consider installing a pedestrian hybrid beacon/High Intensity Activated Crosswalk (HAWK) at the intersection of Bel Pre Road and St. Matthew Church Driveway/Crystal Springs Apartments Driveway, along with marked crosswalks across the east and west legs of Bel Pre Road. See Appendix G for a potential layout of the pedestrian hybrid beacon/marked crosswalk locations.	Long
Bel Pre Road between Georgia Avenue and Connecticut Avenue	Vehicular speeds are significantly greater than the posted speed limit, particularly between Georgia Avenue and Connecticut Avenue.	Coordinate with the Montgomery County Police Department to ensure appropriate levels of enforcement of posted speed limits.	Long

MEMORANDUM

PAGE 21 OF 22

Location	Observation/Issue	Recommendation	Timeframe
Bel Pre Road between Georgia Avenue and Connecticut Avenue	Utility poles on the north side of Bel Pre Road at Grand Pre Road block a portion of the sidewalk.	Evaluate the feasibility of constructing sidewalk jogs around utility poles.	Long
		Redesign pedestrian refuge islands in the median of Bel Pre Road at Tynewick Drive and Dunsinane Drive to provide a pedestrian crossing cutout of 10 feet through the median. Also, Bel Pre Road between Georgia Avenue and Connecticut Avenue	The medians on Dunsinane Drive and Tynewick Drive extend into the pedestrian crossing area/path.

APPENDIX

Crash Data

Crash Data (2015-2019)- Bel Pre Roaa
Layhill Road to Georgia Avenue

APPENDIX

Speed Data

Connor Speed Report

Site Attribute BEL EB - W. OF GRAND Direction EAST

Tuesday, March 1, 2022

$\begin{gathered} \text { Time } \\ {[--} \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 6 \\ 12 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 12 \\ 19 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 19 \\ 25 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 25 \\ 31 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 31 \\ 37 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 37 \\ 43 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 43 \\ 50 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 50 \\ 56 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 56 \\ 62 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 62 \\ 68 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 68 \\ 75 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 75 \\ 81 \\ \hline \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 81 \\ 87 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 87 \\ 93 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 93 \\ 99 \end{gathered}$	$\begin{gathered} \text { Vpp } \\ 50 \end{gathered}$	$\begin{gathered} \text { JPSL } \\ 35 \end{gathered}$
0000		0	5	21	26	10	2	0	0	0	0	0			0	32.2	16
0100	0	0	0	9	15	5	1	0	0	0	0	0			0	33	12
0200	0	0	2	3	5	3	0	1	0	0	0	0			0	33.4	6
0300	0	0	0	3	9	6	0	0	0	0	0	0			0	34.7	8
0400	0	0	0	7	11	4	1	0	0	0	0	0			0	33.8	8
0500	0	0	5	14	43	17	2	1	0	0	0	0			0	34.6	38
0600	0	2	14	48	78	15	2	0	0	0	0	0			0	32.2	46
0700	0	2	10	114	169	52	3	0	0	0	0	0			0	32.5	104
0800	0	3	18	151	196	44	4	2	0	0	0	0			0	32	105
0900	1	0	10	112	195	44	3	0	0	0	0	0			0	33.1	105
1000	0	1	15	66	165	44	3	0	1	0	0	0			0	33.4	95
1100	0	0	16	106	154	45	6	0	0	0	0	0			0	32.3	87
1200	0	0	22	115	181	47	3	1	0	0	0	0			0	32.4	102
1300	0	0	11	117	208	42	5	1	0	0	0	0			0	33.1	110
1400	0	2	14	150	188	45	3	1	0	0	0	0			0	32.2	103
1500	0	3	42	212	286	53	5	0	0	0	0	0			0	32	134
1600	0	1	29	230	342	63	10	0	0	0	0	0			0	32.1	153
1700	1	5	41	260	305	37	1	2	1	0	0	0			0	31.3	111
1800	0	0	27	231	267	58	3	1	0	0	0	0			0	31.5	123
1900		2	21	174	239	27	3	0	0	0	0	0			0	31.8	95
2000	0	1	9	119	177	39	3	1	0	0	0	0			0	32.1	89
2100	0	0	16	97	124	32	2	0	0	0	0	0			0	32.1	65
2200	0	2	6	69	80	31	2	0	0	0	0	0			0	32.8	62
2300	0	1	6	46	78	21	5	0	0	0	0	0			0	33.2	53
00-00		25	339	2474	3541	784	72	11	2	0	0	0			0	32.2	1830

Vehicles $=7250$
Posted speed limit $=35 \mathrm{mph}$, Exceeding $=1830$ (25.24\%), Mean Exceeding $=37.95 \mathrm{mph}$
Maximum $=60.9 \mathrm{mph}$, Minimum $=7.4 \mathrm{mph}$, Mean $=32.2 \mathrm{mph}$
50% Speed $=32.21 \mathrm{mph}, 85 \%$ Speed $=36.69 \mathrm{mph}$, Median $=32.21 \mathrm{mph}$
(82.36\%)

Variance $=21.18$, Standard Deviation $=4.60 \mathrm{mph}$

Wednesday, March 2, 2022

Time [--	$\begin{gathered} \text { Vbin } \\ 6 \\ 12 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 12 \\ 19 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 19 \\ 25 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 25 \\ 31 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 31 \\ 37 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 37 \\ 43 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 43 \\ 50 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 50 \\ 56 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 56 \\ 62 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 62 \\ 68 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 68 \\ 75 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 75 \\ 81 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 81 \\ 87 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 87 \\ 93 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 93 \\ 99 \end{gathered}$	$\begin{gathered} \text { Vpp } \\ 50 \end{gathered}$	$\begin{gathered} \text { JPSL } \\ 35 \end{gathered}$
0000	0	0	3	14	28	8	0	1	0	0	0	0	0	0	0	33.2	16
0100	0	0	0	11	9	6	1	0	0	0	0	0	0	0	0	33.6	11
0200	0	0	2	7	10	4	1	1	0	0	0	0	0	0	0	32.4	9
0300	0	0	0	3	2	7	0	0	0	0	0	0	0	0	0	38	8
0400	0	0	2	10	5	4	0	0	0	0	0	0	0	0	0	30.9	6
0500	0	0	7	19	36	22	3	0	0	0	0	0	0	0	0	34	38
0600	0	0	16	45	71	35	2	0	0	0	0	0	0	0	0	33.3	61
0700	3	2	18	100	168	57	3	0	0	0	0	0	0	0	0	33	123
0800	0	2	27	110	230	50	7	0	0	0	0	0	0	0	0	32.7	117
0900	0	1	14	82	173	60	5	0	1	0	0	0	0	0	0	33.4	116
1000	0	1	13	96	159	36	3	0	0	2	0	0	0	0	0	32.4	80
1100	0	1	16	104	187	39	3	1	0	0	0	0	0	0	0	32.4	95
1200	0	0	25	98	169	24	5	0	0	0	0	0	0	0	0	32.3	82
1300	0	0	16	105	202	53	6	0	0	0	0	0	0	0	0	32.8	109
1400	2	2	27	162	201	60	8	1	0	0	0	0	0	0	0	31.9	124
1500	2	3	23	217	270	60	10	1	0	0	0	0	0	0	0	32	131
1600	3	1	28	272	328	51	14	0	0	0	0	0	0	0	0	31.9	147
1700	3	1	39	275	294	46	0	0	0	0	0	0	0	0	0	31.3	117
1800	1	2	39	278	266	49	1	0	0	0	0	0	0	0	0	31	116
1900	0	0	24	207	220	39	0	0	0	0	0	0	0	0	0	31.3	85
2000	0	3	12	159	183	41	2	0	0	0	0	0	0	0	0	31.9	102
2100	0	1	19	101	119	32	5	0	0	0	0	0	0	0	0	31.7	76
2200	0	1	19	68	100	26	0	0	0	0	0	0	0	0	0	32.1	48
2300	0	0	6	59	62	18	3	0	0	0	0	0	0	0	0	31.9	36
00-00	14	21	395	2602	3492	827	82	5	1	2	0	0	0	0	0	32.1	1853

Vehicles $=7441$
Posted speed limit $=35 \mathrm{mph}$, Exceeding $=1853(24.90 \%)$, Mean Exceeding $=38.07 \mathrm{mph}$
Maximum $=63.4 \mathrm{mph}$, Minimum $=6.3 \mathrm{mph}$, Mean $=32.1 \mathrm{mph}$
50% Speed $=32.10 \mathrm{mph}, 85 \%$ Speed $=36.69 \mathrm{mph}$, Median $=32.10 \mathrm{mph}$
12 mph Pace $=26-38$, Number in Pace $=6027$ (81.00%
Variance $=23.00$, Standard Deviation $=4.80 \mathrm{mph}$

Grand Total

Time [--	$\begin{gathered} \text { Vbin } \\ 6 \\ 12 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 12 \\ 19 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 19 \\ 25 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 25 \\ 31 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 31 \\ 37 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 37 \\ 43 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 43 \\ 50 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 50 \\ 56 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 56 \\ 62 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 62 \\ 68 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 68 \\ 75 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 75 \\ 81 \\ \hline \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 81 \\ 87 \\ \hline \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 87 \\ 93 \\ \hline \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 93 \\ 99 \end{gathered}$	$\begin{gathered} \text { Vpp } \\ 50 \end{gathered}$	$\begin{gathered} \text { JPSL } \\ 35 \end{gathered}$
-	16	46	734	5076	7033	1611	154	16	3	2	0	0	0	0	0	32.1	3683

Posted speed limit $=35 \mathrm{mph}$, Exceeding $=3683$ (25.07\%), Mean Exceeding $=38.01 \mathrm{mph}$
Maximum $=63.4 \mathrm{mph}$, Minimum $=6.3 \mathrm{mph}$, Mean $=32.2 \mathrm{mph}$
0% Speed $=32.10 \mathrm{mph} .85 \%$ Speed $=36.69 \mathrm{mph}$, Median $=32.10 \mathrm{mph}$
2 mph Pace $=26-38$ Number in Pace $=11998$ (81.67\%)
Variance $=22.11$, Standard Deviation $=4.70 \mathrm{mph}$

Connor Speed Report

Dataset

Tuesday, March 1, 2022

Time [--	$\begin{gathered} \text { Vbin } \\ 6 \\ 12 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 12 \\ 19 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 19 \\ 25 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 25 \\ 31 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 31 \\ 37 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 37 \\ 43 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 43 \\ 50 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 50 \\ 56 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 56 \\ 62 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 62 \\ 68 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 68 \\ 75 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 75 \\ 81 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 81 \\ 87 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 87 \\ 93 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 93 \\ 99 \end{gathered}$	$\begin{gathered} \text { Vpp } \\ 50 \end{gathered}$	$\begin{gathered} \text { JPSL } \\ 35 \end{gathered}$
0000	0	0	0	8	14	7	3	2	0	0	0	0	0	0	0	34.2	14
0100	0	0	0	2	5	6	2	0	0	0	0	0	0	0	0	37.5	9
0200	0	0	0	5	7	2	0	0	0	0	0	0	0	0	0	32.5	3
0300	0	0	0	2	8	6	0	0	0	0	0	0	0	0	0	35.6	9
0400	0	0	0	5	26	13	8	0	0	0	0	0	0	0	0	35.8	29
0500	0	0	3	25	76	41	17	4	1	0	0	0	0	0	0	36.1	96
0600	0	1	3	54	166	107	25	4	0	0	0	0	0	0	0	36	207
0700	0	3	20	126	324	152	27	5	0	0	0	0	0	0	0	34.6	292
0800	0	0	5	118	328	176	37	3	1	0	0	0	0	0	0	34.9	330
0900	0	0	5	66	237	135	25	3	2	0	0	0	0	0	0	35.5	260
1000	0	0	3	34	192	76	24	3	1	1	0	0	0	0	0	35.1	168
1100	0	0	4	39	163	107	12	6	0	0	0	0	0	0	0	35.5	179
1200	0	0	2	76	193	100	21	0	0	0	0	0	0	0	0	35.2	204
1300	0	0	7	47	184	100	16	1	0	0	0	0	0	0	0	35.1	186
1400	0	0	7	60	190	120	17	2		0	0	0	0	0	0	35.5	219
1500	0	0	10	89	264	143	18	1	0	0	0	0	0	0	0	35.1	269
1600	0	0	4	66	220	141	20	1	0	0	0	0	0	0	0	35.2	233
1700	0	1	8	120	251	97	16	0	0	0	0	0	0	0	0	34.2	212
1800	0	0	4	70	227	92	23	3	0	0	0	0	0	0	0	34.8	203
1900	0	1	6	57	156	74	6	1	0	0	0	0	0	0	0	34.3	139
2000	0	0	5	41	123	64	6	2	1	0	0	0	0	0	0	34.7	114
2100	0	0	6	37	91	41	5	1	4	0	0	0	0	0	0	34.3	80
2200	0	0	3	28	72	40	4	1	1	0	0	0	0	0	0	35	71
2300	0	0	0	12	39	15	1	0	0	0	0	0	0	0	0	34.4	32
00-00	0	6	105	1187	3556	1855	333	43	12	1	0	0	0	0	0	35	3558

Vehicles $=7098$
Posted speed limit $=35 \mathrm{mph}$, Exceeding $=3558$ (50.13\%), Mean Exceeding $=39.15 \mathrm{mph}$
Maximum $=62.3 \mathrm{mph}$, Minimum $=12.7 \mathrm{mph}$, Mean $=35.3 \mathrm{mph}$
50% Speed $=35.01 \mathrm{mph}, 85 \%$ Speed $=40.15 \mathrm{mph}$, Median $=35.01 \mathrm{mph}$
2 mph Pace $=29-41$, Number in Pace $=5665(79.81 \%)$
Variance $=25.34$, Standard Deviation $=5.03 \mathrm{mph}$

Wednesday, March 2, 2022

Time [--	$\begin{gathered} \text { Vbin } \\ 6 \\ 12 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 12 \\ 19 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 19 \\ 25 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 25 \\ 31 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 31 \\ 37 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 37 \\ 43 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 43 \\ 50 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 50 \\ 56 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 56 \\ 62 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 62 \\ 68 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 68 \\ 75 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 75 \\ 81 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 81 \\ 87 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 87 \\ 93 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 93 \\ 99 \end{gathered}$	$\begin{gathered} \text { Vpp } \\ 50 \end{gathered}$	$\begin{gathered} \text { JPSL } \\ 35 \end{gathered}$
0000	1	0	1	7	20	4	1	0	0	0	0	0	0	0	0	32.7	8
0100	0	0	0	6	11	7	1	0	0	0	0	0	0	0	0	35.1	13
0200	0	0	0	4	12	5	0	2	0	0	0	0	0	0	0	36.5	13
0300	0	0	0	2	4	5	1	1	0	0	0	0	0	0	0	37.4	7
0400	0	0	0	12	21	15	4	1	0	0	0	0	0	0	0	34.4	24
0500	0	0	2	34	51	45	24	4	0	0	0	0	0	0	0	35.8	92
0600	0	0	4	67	156	106	24	5	0	0	0	0	0	0	0	35.6	196
0700	0	0	7	89	322	205	29	6	1	0	0	0	0	0	0	35.7	372
0800	1	7	15	95	316	223	31	6	0	0	1	0	0	0	0	35.6	376
0900	0	1	10	65	180	137	26	2	0	0	0	0	0	0	0	35.9	244
1000	0	0	2	40	179	102	14	3	0	0	0	0	0	0	0	35.8	198
1100	0	0	4	57	174	94	23	4	1	0	0	0	0	0	0	35.6	197
1200	0	0	1	53	197	107	23	2	1	0	0	0	0	0	0	35.3	204
1300	0	0	2	58	171	128	16	2	1	0	0	0	0	0	0	35.8	215
1400	0	0	9	65	203	131	21	1	0	0	0	0	0	0	0	35.3	225
1500	0	4	9	120	253	140	17	1	0	0	0	0	0	0	0	34.7	263
1600	0	0	5	82	245	103	17	1	0	0	0	0	0	0	0	34.8	215
1700	0	0	6	95	288	99	14	1	0	0	0	0	0	0	0	34.2	214
1800	0	1	9	111	236	85	11	5	0	0	0	0	0	0	0	33.8	177
1900	0	0	4	58	183	80	10	0	0	0	0	0	0	0	0	34.7	157
2000	0	0	3	37	110	60	9	1	0	0	0	0	0	0	0	35	111
2100	0	0	3	43	94	48	7	3	0	0	0	0	0	0	0	34.8	95
2200	0	0	1	24	61	24	12	0	1	0	0	0	0	0	0	34.4	55
2300	0	0	0	16	40	22	3	0	0	0	0	0	0	0	0	35.3	42
00-00	2	13	97	1240	3527	1975	338	51	5	0	1	0	0	0	0	35.1	3713

Vehicles $=7249$
Maximum $=74.0 \mathrm{mph}$, Minimum $=7.6 \mathrm{mph}$, Mean $=35.3 \mathrm{mph}$
50% Speed $=35.12 \mathrm{mph}, 85 \%$ Speed $=40.26 \mathrm{mph}$, Median $=35.12 \mathrm{mph}$
12 mph Pace $=30-42$, Number in Pace $=5711(78.78 \%)$
Variance $=25.80$, Standard Deviation $=5.08 \mathrm{mph}$

Grand Total

Time [--	$\begin{gathered} \text { Vbin } \\ 6 \\ 12 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 12 \\ 19 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 19 \\ 25 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 25 \\ 31 \\ \hline \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 31 \\ 37 \\ \hline \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 37 \\ 43 \\ \hline \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 43 \\ 50 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 50 \\ 56 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 56 \\ 62 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 62 \\ 68 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 68 \\ 75 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 75 \\ 81 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 81 \\ 87 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 87 \\ 93 \\ \hline \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 93 \\ 99 \end{gathered}$	$\begin{gathered} \text { Vpp } \\ 50 \end{gathered}$	$\begin{gathered} \text { JPSL } \\ 35 \end{gathered}$
--	2	19	202	2427	7083	3830	671	94	17	1	1	0	0	0	0	35.1	727

Posted speed limit $=35 \mathrm{mph}$, Exceeding $=7271$ (50.68\%), Mean Exceeding $=39.14 \mathrm{mph}$
Maximum $=74.0 \mathrm{mph}$, Minimum $=7.6 \mathrm{mph}$, Mean $=35.3 \mathrm{mph}$
0% Speed $=35.12 \mathrm{mph}, 85 \%$ Speed $=40.15 \mathrm{mph}$, Median $=35.12 \mathrm{mph}$
2 mph Pace $=29-41$, Number in Pace $=11373(79.27 \%)$
Variance $=25.57$, Standard Deviation $=5.06 \mathrm{mph}$

Connor Speed Report

Dataset
Site Name BEL PRE EB W.OF BIG BEAR
Direction East

Tuesday, March 1, 2022

Time [--	$\begin{gathered} \text { Vbin } \\ 6 \\ 12 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 12 \\ 19 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 19 \\ 25 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 25 \\ 31 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 31 \\ 37 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 37 \\ 43 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 43 \\ 50 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 50 \\ 56 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 56 \\ 62 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 62 \\ 68 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 68 \\ 75 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 75 \\ 81 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 81 \\ 87 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 87 \\ 93 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 93 \\ 99 \end{gathered}$	$\begin{gathered} \text { Vpp } \\ 50 \end{gathered}$	$\begin{gathered} \text { JPSL } \\ 35 \end{gathered}$
0000	1	0	0	3	8	15	6	3	0	0	0	0	0	0	0	39.3	27
0100	0	0	0	2	5	8	7	1	0	0	0	0	0	0	0	40.6	17
0200	0	0	0	1	4	5	0	0	1	0	1	0	0	0	0	39.6	8
0300	0	0	0	0	6	8	10	5	1	1	1	0	0	0	0	44.1	29
0400	0	0	0	4	10	20	21	6	3	0	0	0	0	0	0	43.3	58
0500	0	0	1	7	43	67	57	23	8	1	0	0	0	0	0	42.3	179
0600	0	0	0	11	84	146	77	24	3	0	0	0	0	0	0	40.5	288
0700	0	0	3	27	209	252	106	22	4	1	0	0	0	0	0	38.7	492
0800	0	0	2	35	262	273	91	12	2	0	1	0	0	0	0	37.8	505
0900	0	2	2	36	186	230	84	14	4	2	0	0	0	1	0	38.5	428
1000	0	1	1	18	191	172	53	10	2	1	0	0	0	0	0	37.7	338
1100	0	0	1	15	210	232	58	15	4	2	0	0	0	0	0	38.1	420
1200	0	0	1	29	221	227	58	10	4	0	0	0	0	0	0	37.7	405
1300	0	0	1	50	213	227	80	13	3	1	0	0	0	0	0	37.9	439
1400	0	1	2	40	270	240	71	9	1	1	0	0	0	0	0	37.5	429
1500	0	4	7	62	339	285	81	12	4	1	1	0	0	0	0	37.1	538
1600	0	1	1	48	328	328	81	11	2	0	0	0	0	0	0	37.6	568
1700	0	0	0	46	368	314	57	16	5	1	0	0	0	0	0	37.1	559
1800	0	1	1	63	372	261	59	15	2	1	1	1	0	0	0	36.7	507
1900	0	2	16	48	263	186	53	12	3	0	0	0	0	0	0	36.5	364
2000	0	0	3	28	173	142	57	13	1	0	0	0	0	0	0	37.4	286
2100	0	0	1	10	116	123	32	9	0	0	1	0	0	0	0	37.7	223
2200	0	0	1	16	51	75	36	4	2	0	0	0	0	0	0	38.8	144
2300	0	0	0	6	36	37	23	6	0	0	0	0	0	0	0	38.7	84
00-00	1	12	44	605	3968	3873	1258	265	59	13	6	1	0	1	0	37.7	7335

Vehicles $=10106$

Posted speed limit $=35 \mathrm{mph}$, Exceeding $=7335$ (72.58%), Mean Exceeding $=40.68 \mathrm{mph}$
Maximum $=88.8 \mathrm{mph}$, Minimum $=12.2 \mathrm{mph}$, Mean $=38.4 \mathrm{mph}$
50% Speed $=37.69 \mathrm{mph}, 85 \%$ Speed $=43.73 \mathrm{mph}$, Median $=37.69 \mathrm{mph}$
12 mph Pace $=32-44$, Number in Pace $=7707$ (76.26\%)
Variance $=31.94$, Standard Deviation $=5.65 \mathrm{mph}$

Wednesday, March 2, 2022

Time [--	$\begin{gathered} \text { Vbin } \\ 6 \\ 12 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 12 \\ 19 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 19 \\ 25 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 25 \\ 31 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 31 \\ 37 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 37 \\ 43 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 43 \\ 50 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 50 \\ 56 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 56 \\ 62 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 62 \\ 68 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 68 \\ 75 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 75 \\ 81 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 81 \\ 87 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 87 \\ 93 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 93 \\ 99 \end{gathered}$	$\begin{gathered} \text { Vpp } \\ 50 \end{gathered}$	$\begin{gathered} \text { JPSL } \\ 35 \end{gathered}$
0000	0	0	0	2	13	18	4	2	2	0	0	0	0	0	0	39.3	32
0100	0	0	0	0	6	9	6	3	0	0	0	0	0	0	0	40.8	21
0200	0	0	0	1	6	5	1	0	1	0	1	0	0	0	0	37.4	12
0300	0	0	0	1	7	7	7	0	1	0	1	0	0	0	0	40.1	16
0400	0	0	0	1	20	22	16	8	2	1	0	0	0	0	0	41	64
0500	0	0	0	8	35	84	58	30	5	3	0	0	0	0	0	42.5	200
0600	0	0	1	7	107	142	69	28	5	1	0	0	0	0	0	40.4	305
0700	0	0	1	42	231	276	97	26	5	0	0	0	0	0	0	38.2	517
0800	0	4	10	30	292	263	72	14	3	0	0	0	0	0	0	37.5	492
0900	0	0	3	36	186	222	79	17	3	0	0	0	0	0	0	38.3	404
1000	0	0	0	27	151	204	78	13	2	0	0	0	0	0	0	38.7	394
1100	0	0	1	18	220	214	57	11	4	1	0	0	0	0	0	37.8	391
1200	0	0	7	34	221	230	87	14	1	2	0	0	0	0	0	38.2	453
1300	0	0	3	31	217	300	62	17	4	1	0	0	0	0	0	38.3	502
1400	0	1	1	34	239	261	69	13	5	0	1	0	0	0	0	37.9	449
1500	2	2	5	58	309	308	78	13	4	0	0	0	0	0	0	37.6	548
1600	0	1	2	78	393	291	72	12	5	1	0	0	0	0	0	36.8	584
1700	5	2	3	92	357	295	74	11	2	0	0	0	0	0	0	36.8	570
1800	0	3	3	61	360	249	57	9	1	0	0	0	0	0	0	36.6	473
1900	0	0	1	60	229	215	51	3	1	1	0	0	0	0	0	37	372
2000	0	0	0	29	157	139	41	17	1	1	0	0	0	0	0	37.5	271
2100	0	0	7	25	106	88	36	12	2	0	0	1	0	0	0	37.4	192
2200	0	0	0	12	70	65	32	10	0	0	0	0	0	0	0	38.7	125
2300	0	2	0	5	33	48	26	3	2	0	0	0	0	0	0	39.9	92
00-00	7	15	48	692	3965	3955	1229	286	61	12	3	1	0	0	0	37.8	7479

Vehicles $=10274$
Posted speed limit $=35 \mathrm{mph}$, Exceeding $=7479$ (72.80%), Mean Exceeding $=40.62 \mathrm{mph}$
Maximum $=75.4 \mathrm{mph}$, Minimum $=6.3 \mathrm{mph}$, Mean $=38.3 \mathrm{mph}$
50% Speed $=37.80 \mathrm{mph}, 85 \%$ Speed $=43.62 \mathrm{mph}$, Median $=37.80 \mathrm{mph}$
12 mph Pace $=32-44$, Number in Pace $=7791(75.83 \%)$
Variance $=32.71$, Standard Deviation $=5.72 \mathrm{mph}$

Grand Total

Time [--	$\begin{gathered} \text { Vbin } \\ 6 \\ 12 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 12 \\ 19 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 19 \\ 25 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 25 \\ 31 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 31 \\ 37 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 37 \\ 43 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 43 \\ 50 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 50 \\ 56 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 56 \\ 62 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 62 \\ 68 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 68 \\ 75 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 75 \\ 81 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 81 \\ 87 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 87 \\ 93 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 93 \\ 99 \end{gathered}$	$\begin{gathered} \text { Vpp } \\ 50 \end{gathered}$	$\begin{gathered} \text { JPSL } \\ 35 \end{gathered}$
--	8	27	92	1297	7933	7828	2487	551	120	25	9	2	0	1	0	37.8	14814

[^0]Posted speed limit $=35 \mathrm{mph}$, Exceeding $=14814$ (72.69\%), Mean Exceeding $=40.65 \mathrm{mph}$
Maximum $=88.8 \mathrm{mph}$, Minimum $=6.3 \mathrm{mph}$, Mean $=38.3 \mathrm{mph}$
50% Speed $=37.80 \mathrm{mph}, 85 \%$ Speed $=43.73 \mathrm{mph}$, Median $=37.80 \mathrm{mph}$
12 mph Pace $=32-44$, Number in Pace $=15494$ (76.03\%)
Variance $=32.33$, Standard Deviation $=5.69 \mathrm{mph}$

Connor Speed Report

Dataset
Site Name BEL PRE WB W.OF BIG BEAR
Direction West

Tuesday, March 1, 2022

Time [--	$\begin{gathered} \text { Vbin } \\ 6 \\ 12 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 12 \\ 19 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 19 \\ 25 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 25 \\ 31 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 31 \\ 37 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 37 \\ 43 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 43 \\ 50 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 50 \\ 56 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 56 \\ 62 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 62 \\ 68 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 68 \\ 75 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 75 \\ 81 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 81 \\ 87 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 87 \\ 93 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 93 \\ 99 \end{gathered}$	$\begin{gathered} \text { Vpp } \\ 50 \end{gathered}$	$\begin{gathered} \text { JPSL } \\ 35 \end{gathered}$
0000	0	0	0	1	13	22	14	6	1	2	0	0	0	0	0	41.2	49
0100	0	0	0	0	7	16	6	2	0	0	0	0	0	0	0	38.7	27
0200	0	0	0	1	5	4	3	0	1	0	0	0	0	0	0	39.1	11
0300	0	0	0	1	7	3	4	1	0	0	0	0	0	0	0	37.7	12
0400	0	0	1	0	11	15	6	4	1	0	0	0	0	0	0	39.4	34
0500	0	0	0	3	20	50	34	9	2	0	0	0	0	0	0	41.6	105
0600	0	1	2	5	68	136	92	37	4	2	1	0	0	0	0	41.5	305
0700	0	1	1	10	112	335	171	30	5	1	0	0	0	0	0	41.2	600
0800	0	0	1	19	215	430	147	20	1	0	0	0	0	0	0	39.5	709
0900	0	0	0	15	134	240	110	26	8	0	0	0	0	0	0	40.6	468
1000	0	0	1	9	142	233	87	22	0	1	0	0	0	0	0	39.7	429
1100	0	0	0	12	154	240	80	8	4	2	0	0	0	0	0	39.3	421
1200	0	1	2	21	170	256	88	14	5	0	0	0	0	0	0	38.8	451
1300	0	0	1	10	190	266	99	14	4	0	0	0	0	0	0	39.5	486
1400	0	0	1	14	187	293	95	17	2	1	1	0	0	0	0	39	516
1500	0	0	1	32	279	335	86	20	2	0	0	0	0	0	0	38.3	578
1600	4	6	5	24	221	326	124	28	6	0	0	0	0	0	0	39.3	602
1700	0	0	1	34	221	394	128	31	4	3	0	0	0	0	0	39.1	682
1800	0	0	1	37	280	299	83	14	2	1	0	0	0	0	0	37.9	542
1900	0	2	3	61	268	230	53	8	2	0	0	0	0	0	0	36.9	417
2000	0	1	0	21	168	146	37	10	2	0	1	0	0	0	0	37.4	278
2100	0	0	1	24	96	115	61	7	0	1	0	0	0	0	0	38.1	230
2200	0	0	1	7	62	89	44	11	1	1	1	0	0	0	0	39.8	184
2300	0	0	0	5	42	54	28	5	2	1	0	0	0	0	0	39.8	114
00-00	4	12	23	366	3072	4527	1680	344	59	16	4	0	0	0	0	39.1	8250

Vehicles $=10107$

Posted speed limit $=35 \mathrm{mph}$, Exceeding $=8250$ (81.63%), Mean Exceeding $=41.21 \mathrm{mph}$
Maximum $=70.6 \mathrm{mph}$, Minimum $=9.4 \mathrm{mph}$, Mean $=39.6 \mathrm{mph}$
50% Speed $=39.15 \mathrm{mph}, 85 \%$ Speed $=44.85 \mathrm{mph}$, Median $=39.15 \mathrm{mph}$
12 mph Pace $=33-45$, Number in Pace $=7716$ (76.34\%)
Variance $=30.29$, Standard Deviation $=5.50 \mathrm{mph}$

Wednesday, March 2, 2022

Time [--	$\begin{gathered} \text { Vbin } \\ 6 \\ 12 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 12 \\ 19 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 19 \\ 25 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 25 \\ 31 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 31 \\ 37 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 37 \\ 43 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 43 \\ 50 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 50 \\ 56 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 56 \\ 62 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 62 \\ 68 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 68 \\ 75 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 75 \\ 81 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 81 \\ 87 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 87 \\ 93 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 93 \\ 99 \end{gathered}$	$\begin{gathered} \text { Vpp } \\ 50 \end{gathered}$	$\begin{gathered} \text { JPSL } \\ 35 \end{gathered}$
0000	0	0	0	3	14	22	15	2	0	0	0	0	0	0	0	39.6	46
0100	0	0	0	1	11	10	12	3	0	0	0	0	0	0	0	42.2	33
0200	0	0	1	1	9	9	2	0	1	0	0	0	0	0	0	37.5	16
0300	0	0	0	0	4	8	3	1	1	0	0	0	0	0	0	42.3	16
0400	0	0	1	3	6	17	11	4	0	1	0	0	0	0	0	40.9	36
0500	0	0	0	2	22	45	32	12	1	0	0	0	0	0	0	42.2	105
0600	0	0	1	8	44	149	103	28	10	4	0	0	0	0	0	42.4	317
0700	0	1	1	8	140	372	140	35	9	0	0	0	0	0	0	40.4	650
0800	0	0	0	28	222	366	185	33	5	0	1	0	0	0	0	40	714
0900	0	0	3	7	148	264	102	27	4	1	0	0	0	0	0	40	480
1000	0	0	0	7	138	240	67	16	4	2	0	0	0	0	0	39.3	409
1100	0	0	1	12	153	257	101	16	6	1	1	0	0	0	0	39.6	482
1200	0	0	1	11	179	279	76	15	4	0	1	0	0	0	0	39	485
1300	0	0	1	11	170	297	95	15	8	2	0	0	0	0	0	39.4	514
1400	0	0	0	12	177	319	96	20	4	0	0	0	0	0	0	39	528
1500	0	1	7	48	270	338	100	21	3	1	0	0	0	0	0	38.4	592
1600	0	1	1	30	201	343	142	21	5	0	0	0	0	0	0	39.5	616
1700	0	1	4	33	232	374	110	12	5	1	0	0	0	0	0	39	616
1800	0	0	1	53	310	314	75	18	2	3	0	0	0	0	0	37.7	561
1900	0	0	1	27	216	233	57	10	0	0	0	0	0	0	0	37.7	409
2000	0	0	4	20	139	171	55	8	2	0	1	0	0	0	0	38.4	313
2100	0	0	1	15	98	139	51	17	3	0	1	0	0	0	0	39	258
2200	0	1	1	12	82	96	30	10	2	0	0	0	0	0	0	38.5	176
2300	0	0	0	2	38	43	31	8	0	1	0	0	0	0	0	40.6	99
00-00	0	5	30	354	3023	4705	1691	352	79	17	5	0	0	0	0	39.1	8471

Vehicles $=10261$

Posted speed limit $=35 \mathrm{mph}$, Exceeding $=8471$ (82.56%), Mean Exceeding $=41.24 \mathrm{mph}$
Maximum $=70.8 \mathrm{mph}$, Minimum $=14.9 \mathrm{mph}$, Mean $=39.7 \mathrm{mph}$
50% Speed $=39.15 \mathrm{mph}, 85 \%$ Speed $=44.96 \mathrm{mph}$, Median $=39.15 \mathrm{mph}$
12 mph Pace $=33-45$, Number in Pace $=7849$ (76.49\%)
Variance $=30.22$, Standard Deviation $=5.50 \mathrm{mph}$

Grand Total

Time [--	$\begin{gathered} \text { Vbin } \\ 6 \\ 12 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 12 \\ 19 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 19 \\ 25 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 25 \\ 31 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 31 \\ 37 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 37 \\ 43 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 43 \\ 50 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 50 \\ 56 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 56 \\ 62 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 62 \\ 68 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 68 \\ 75 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 75 \\ 81 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 81 \\ 87 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 87 \\ 93 \end{gathered}$	$\begin{gathered} \text { Vbin } \\ 93 \\ 99 \end{gathered}$	Vpp	$\begin{gathered} \text { JPSL } \\ 35 \end{gathered}$
--	4	17	53	720	6095	9232	3371	696	138	33	9	0	0	0	0	39.1	16721

[^1]Posted speed limit $=35 \mathrm{mph}$, Exceeding $=16721$ (82.09\%), Mean Exceeding $=41.22 \mathrm{mph}$
Maximum $=70.8 \mathrm{mph}$, Minimum $=9.4 \mathrm{mph}$, Mean $=39.6 \mathrm{mph}$
50% Speed $=39.15 \mathrm{mph}, 85 \%$ Speed $=44.85 \mathrm{mph}$, Median $=39.15 \mathrm{mph}$
12 mph Pace $=33-45$, Number in Pace $=15561$ (76.40%)
Variance $=30.25$, Standard Deviation $=5.50 \mathrm{mph}$

APPENDIX

USLIMITS2 Outputs

USLIMITS2 Speed Zoning Report

Project Overview

Project Name: Bel Pre Road, west of GPR

Analyst: STV

Basic Project Information
Route Name: Bel Pre Road
From: MD 97
To: Layhill Road
State: Maryland
County: Montgomery County
City: Aspen Hill CDP
Route Type: Road Section in Developed Area
Route Status: Existing

Roadway Information

Section Length: 1.9 mile(s)
Statutory Speed Limit: 35 mph
Existing Speed Limit: 35 mph
Adverse Alignment: No
One-Way Street: No
Divided/Undivided: TWLTL
Number of Through Lanes: 4
Area Type: Residential-Collector/Arterial
Number of Driveways: 61
Number of Signals: 9

Date: 2022-03-08

Crash Data Information
Crash Data Years: 5.00
Crash AADT: 14519 veh/day
Total Number of Crashes: 247
Total Number of Injury Crashes: 107
Section Crash Rate: 491 per 100 MVM
Section Injury Crash Rate: 213 per 100 MVM
Crash Rate Average for Similar Roads: 213
Injury Rate Average for Similar Roads: 67

Traffic Information

85th Percentile Speed: 38 mph
50th Percentile Speed: 34 mph
AADT: 14519 veh/day
On Street Parking and Usage: Not High
Pedestrian / Bicyclist Activity: High

Recommended Speed Limit: 35

Note: The section crash rate of 491 per 100 MVM is above the critical rate (248). The injury crash rate for the section of 213 per 100 MVM is above the critical rate (87). A comprehensive crash study should be undertaken to identify engineering and traffic control deficiencies and appropriate corrective actions. The speed limit should only be reduced as a last measure after all other treatments have either been tried or ruled out.

Note: The road section is in an area with high pedestrian or bicycle activity. Consider implementing engineering measures to reduce speeds before lowering the recommended speed limit. See Engineering Countermeasures for Speed Management and PedSafe for more guidance.

Disclaimer: The U.S. Government assumes no liability for the use of the information contained in this report. This report does not constitute a standard, specification, or regulation.

Equations Used in the Crash Data Calculations

Exposure (M)
$M=$ (Section AADT * 365 * Section Length * Duration of Crash Data) / (100000000)
$M=(14519 * 365 * 1.9 * 5.00) /(100000000)$
$M=0.5034$
Crash Rate (Rc)
Rc $=($ Section Crash Average $* 100000000) /($ Section AADT $* 365 *$ Section Length $)$
$\mathrm{Rc}=(49.40$ * 100000000) / (14519 * 365 * 1.9)
Rc $=490.62$ crashes per 100 MVM
Injury Rate (Ri)
$\mathrm{Ri}=$ (Section Injury Crash Average * 100000000) / (Section AADT * 365 * Section Length)
$\mathrm{Ri}=(21.40$ * 100000000$) /(14519 * 365 * 1.9)$
$\mathrm{Ri}=212.54$ injuries per 100 MVM

Critical Crash Rate (Cc)

Cc = Crash Average of Similar Sections +1.645 * (Crash Average of Similar Sections / Exposure) ^ $(1 / 2)+(1 /(2$ * Exposure))
$\mathrm{Cc}=212.78+1.645 *(212.78 / 0.5034)^{\wedge}(1 / 2)+(1 /(2 * 0.5034))$
$\mathrm{Cc}=247.59$ crashes per 100 MVM
Critical Injury Rate (IC)
Ic = Injury Crash Average of Similar Sections +1.645 * (Injury Crash Average of Similar Sections /
Exposure $)^{\wedge}(1 / 2)+(1 /(2$ * Exposure))
Ic $=67.19+1.645 *(67.19 / 0.5034)^{\wedge}(1 / 2)+(1 /(2 * 0.5034))$
Ic $=87.19$ injuries per 100 MVM

USLIMITS2 Speed Zoning Report

Project Overview

Project Name: Bel Pre Road, east of Beaverwood Lane

Analyst: STV
Basic Project Information
Route Name: Bel Pre Road
From: MD 97
To: Layhill Road
State: Maryland
County: Montgomery County
City: Aspen Hill CDP
Route Type: Road Section in Developed Area
Route Status: Existing

Roadway Information

Section Length: 1.9 mile(s)
Statutory Speed Limit: 35 mph
Existing Speed Limit: 35 mph
Adverse Alignment: No
One-Way Street: No
Divided/Undivided: TWLTL
Number of Through Lanes: 4
Area Type: Residential-Collector/Arterial
Number of Driveways: 61
Number of Signals: 9

Date: 2022-03-08
Crash Data Information
Crash Data Years: 5.00
Crash AADT: 20374 veh/day
Total Number of Crashes: 247
Total Number of Injury Crashes: 107
Section Crash Rate: 350 per 100 MVM
Section Injury Crash Rate: 151 per 100 MVM
Crash Rate Average for Similar Roads: 231
Injury Rate Average for Similar Roads: 77

Traffic Information

85th Percentile Speed: 44 mph
50th Percentile Speed: 38 mph
AADT: 20374 veh/day
On Street Parking and Usage: Not High
Pedestrian / Bicyclist Activity: High

Recommended Speed Limit: 40

Note: The final recommended speed limit is higher than the 35 mph statutory speed limit for this type of road. An engineering study such as the one carried out with USLIMITS is usually required to set a speed limit above the statutory limit.

Note: The section crash rate of 350 per 100 MVM is above the critical rate (262). The injury crash rate for the section of 151 per 100 MVM is above the critical rate (95). A comprehensive crash study should be undertaken to identify engineering and traffic control deficiencies and appropriate corrective actions. The speed limit should only be reduced as a last measure after all other treatments have either been tried or ruled out.

Note: The road section is in an area with high pedestrian or bicycle activity. Consider implementing engineering measures to reduce speeds before lowering the recommended speed limit. See Engineering Countermeasures for Speed Management and PedSafe for more guidance.

Disclaimer: The U.S. Government assumes no liability for the use of the information contained in this report. This report does not constitute a standard, specification, or regulation.

Equations Used in the Crash Data Calculations

```
Exposure (M)
M = (Section AADT * 365 * Section Length * Duration of Crash Data) / (100000000)
M = (20374 * 365 * 1.9 * 5.00) / (100000000)
M = 0.7065
```

Crash Rate (Rc)
Rc $=$ (Section Crash Average * 100000000) / (Section AADT * 365 * Section Length)
$R c=(49.40 * 100000000) /(20374 * 365 * 1.9)$
Rc $=349.63$ crashes per 100 MVM
Injury Rate (Ri)
$\mathrm{Ri}=$ (Section Injury Crash Average * 100000000) / (Section AADT * 365 * Section Length)
$\mathrm{Ri}=(21.40 * 100000000) /(20374 * 365 * 1.9)$
$\mathrm{Ri}=151.46$ injuries per 100 MVM

Critical Crash Rate (Cc)
Cc = Crash Average of Similar Sections $+1.645 *$ (Crash Average of Similar Sections / Exposure) \wedge
$(1 / 2)+(1 /(2$ * Exposure))
$\mathrm{Cc}=231.25+1.645 *(231.25 / 0.7065) \wedge(1 / 2)+(1 /(2 * 0.7065))$
$\mathrm{Cc}=261.72$ crashes per 100 MVM

Critical Injury Rate (IC)
Ic = Injury Crash Average of Similar Sections +1.645 * (Injury Crash Average of Similar Sections /
Exposure $)^{\wedge}(1 / 2)+(1 /(2 *$ Exposure $))$
Ic $=77.17+1.645 *(77.17 / 0.7065) \wedge(1 / 2)+(1 /(2 * 0.7065))$
Ic $=95.08$ injuries per 100 MVM

APPENDIX

Turning Movement Count

Comments:

APPENDIX

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	44	「	${ }^{7}$	44	「	${ }^{71}$	坐种	「	${ }^{71}$	坐乐	「
Traffic Volume（veh／h）	165	200	270	315	450	250	195	845	85	130	2000	150
Future Volume（veh／h）	165	200	270	315	450	250	195	845	85	130	2000	150
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	0.99		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1870	1870	1870	1870	1870	1870	1575	1870	1870	1723	1870
Adj Flow Rate，veh／h	183	222	0	366	523	0	207	899	0	134	2062	0
Peak Hour Factor	0.90	0.90	0.90	0.86	0.86	0.86	0.94	0.94	0.94	0.97	0.97	0.97
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h	235	484		358	583		245	2196		174	2304	
Arrive On Green	0.10	0.14	0.00	0.13	0.16	0.00	0.07	0.51	0.00	0.05	0.49	0.00
Sat Flow，veh／h	1781	3554	1585	1781	3554	1585	3456	4300	1585	3456	4703	1585
Grp Volume（v），veh／h	183	222	0	366	523	0	207	899	0	134	2062	0
Grp Sat Flow（s），veh／h／ln	1781	1777	1585	1781	1777	1585	1728	1433	1585	1728	1568	1585
Q Serve（g＿s），s	15.7	10.4	0.0	23.0	26.0	0.0	10.7	23.3	0.0	6.9	71.7	0.0
Cycle Q Clear（g＿c），s	15.7	10.4	0.0	23.0	26.0	0.0	10.7	23.3	0.0	6.9	71.7	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	235	484		358	583		245	2196		174	2304	
V／C Ratio（X）	0.78	0.46		1.02	0.90		0.84	0.41		0.77	0.89	
Avail Cap（c＿a），veh／h	285	790		358	790		278	2196		278	2304	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay（d），s／veh	60.0	71.6	0.0	65.3	73.7	0.0	82.6	27.3	0.0	84.4	41.7	0.0
Incr Delay（d2），s／veh	10.6	0.7	0.0	53.1	10.3	0.0	18.7	0.6	0.0	7.0	5.9	0.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	7.9	4.8	0.0	10.6	12.6	0.0	5.3	7.9	0.0	3.2	27.9	0.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	70.6	72.3	0.0	118.5	84.0	0.0	101.3	27.8	0.0	91.5	47.6	0.0
LnGrp LOS	E	E		F	F		F	C		F	D	
Approach Vol，veh／h		405	A		889	A		1106	A		2196	A
Approach Delay，s／veh		71.5			98.2			41.6			50.3	
Approach LOS		E			F			D			D	

Timer－Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration（G＋Y＋Rc），s	21.3	95.2	32.0	31.5	17.6	98.9	27.0	36.6
Change Period（Y＋Rc），s	8.5	7.0	9.0	7.0	8.5	7.0	9.0	7.0
Max Green Setting（Gmax），s	14.5	71.0	23.0	40.0	14.5	71.0	23.0	40.0
Max Q Clear Time（g＿c＋11），s	12.7	0.0	25.0	12.4	8.9	0.0	17.7	28.0
Green Ext Time（p＿c），s	0.1	0.0	0.0	0.8	0.2	0.0	0.2	1.6

Intersection Summary

HCM 6th Ctrl Delay	59.3
HCM 6th LOS	E

Notes

Unsignalized Delay for［NBR，EBR，WBR，SBR］is excluded from calculations of the approach delay and intersection delay．

Intersection												
Int Delay, s/veh 1.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	㻢		${ }^{*}$	44			\leftrightarrow			\&	
Traffic Vol, veh/h	3	784	43	21	513	0	32	0	31	0	0	0
Future Vol, veh/h	3	784	43	21	513	0	32	0	31	0	0	0
Conflicting Peds, \#/hr	6	0	15	15	0	6	5	0	0	0	0	5
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	150	-	-	125	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	3	852	47	23	558	0	35	0	34	0	0	0

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个4	「	${ }^{7}$	个4	「	\％${ }^{*}$	个中4	「	\％＊＊	个个中	F
Traffic Volume（veh／h）	210	385	235	145	220	180	215	1785	200	245	1140	120
Future Volume（veh／h）	210	385	235	145	220	180	215	1785	200	245	1140	120
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	0.99		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1870	1870	1870	1870	1870	1870	1575	1870	1870	1575	1870
Adj Flow Rate，veh／h	231	423	0	159	242	0	222	1840	0	255	1188	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.97	0.97	0.97	0.96	0.96	0.96
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h	340	652		261	598		264	2026		296	2066	
Arrive On Green	0.10	0.18	0.00	0.08	0.17	0.00	0.08	0.47	0.00	0.09	0.48	0.00
Sat Flow，veh／h	1781	3554	1585	1781	3554	1585	3456	4300	1585	3456	4300	1585
Grp Volume（v），veh／h	231	423	0	159	242	0	222	1840	0	255	1188	0
Grp Sat Flow（s），veh／h／ln	1781	1777	1585	1781	1777	1585	1728	1433	1585	1728	1433	1585
Q Serve（g＿s），s	18.0	19.9	0.0	13.2	10.9	0.0	11.4	71.2	0.0	13.1	35.7	0.0
Cycle Q Clear（g＿c），s	18.0	19.9	0.0	13.2	10.9	0.0	11.4	71.2	0.0	13.1	35.7	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	340	652		261	598		264	2026		296	2066	
V／C Ratio（X）	0.68	0.65		0.61	0.40		0.84	0.91		0.86	0.58	
Avail Cap（c＿a），veh／h	340	652		288	652		355	2026		355	2066	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay（d），s／veh	56.7	68.1	0.0	56.1	66.8	0.0	82.1	44.0	0.0	81.3	33.6	0.0
Incr Delay（d2），s／veh	5.4	5.0	0.0	3.1	0.4	0.0	12.7	7.4	0.0	16.8	1.2	0.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	1.4	9.6	0.0	6.2	5.0	0.0	5.5	25.7	0.0	6.5	12.4	0.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	62.1	73.1	0.0	59.2	67.3	0.0	94.8	51.4	0.0	98.0	34.7	0.0
LnGrp LOS	E	E		E	E		F	D		F	C	
Approach Vol，veh／h		654	A		401	A		2062	A		1443	A
Approach Delay，s／veh		69.2			64.1			56.1			45.9	
Approach LOS		E			E			E			D	

Timer－Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration $(G+Y+R c)$ ，s	22.2	93.5	24.3	40.0	23.9	91.8	27.0	37.3
Change Period $(\mathbf{Y}+\mathrm{Rc})$ ，s	8.5	7.0	9.0	7.0	8.5	7.0	9.0	7.0
Max Green Setting（Gmax），s	18.5	79.0	18.0	33.0	18.5	79.0	18.0	33.0
Max Q Clear Time（g＿c＋11），s	13.4	0.0	15.2	21.9	15.1	0.0	20.0	12.9
Green Ext Time（p＿c），s	0.3	0.0	0.1	1.3	0.3	0.0	0.0	0.8

Intersection Summary

HCM 6th Ctrl Delay 55.5
HCM 6th LOS
E

Notes

User approved pedestrian interval to be less than phase max green．
Unsignalized Delay for［NBR，EBR，WBR，SBR］is excluded from calculations of the approach delay and intersection delay．

Intersection												
Int Delay, s/veh 1.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	㻢		${ }^{7}$	中4			\uparrow			\&	
Traffic Vol, veh/h	3	388	24	15	973	0	42	1	19	0	4	0
Future Vol, veh/h	3	388	24	15	973	0	42	1	19	0	4	0
Conflicting Peds, \#/hr	2	0	10	10	0	2	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	150	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	3	422	26	16	1058	0	46	1	21	0	4	0

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	44	「	＊	44	「	${ }^{7} 1$	率	「	${ }^{7} 1$	中44	「
Traffic Volume（veh／h）	165	200	270	315	450	250	195	845	85	130	2000	150
Future Volume（veh／h）	165	200	270	315	450	250	195	845	85	130	2000	150
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	0.99		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1870	1870	1870	1870	1870	1870	1575	1870	1870	1723	1870
Adj Flow Rate，veh／h	183	222	0	366	523	0	207	899	0	134	2062	0
Peak Hour Factor	0.90	0.90	0.90	0.86	0.86	0.86	0.94	0.94	0.94	0.97	0.97	0.97
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h	235	484		358	583		245	2196		174	2304	
Arrive On Green	0.10	0.14	0.00	0.13	0.16	0.00	0.07	0.51	0.00	0.05	0.49	0.00
Sat Flow，veh／h	1781	3554	1585	1781	3554	1585	3456	4300	1585	3456	4703	1585
Grp Volume（v），veh／h	183	222	0	366	523	0	207	899	0	134	2062	0
Grp Sat Flow（s），veh／h／ln	1781	1777	1585	1781	1777	1585	1728	1433	1585	1728	1568	1585
Q Serve（g＿s），s	15.7	10.4	0.0	23.0	26.0	0.0	10.7	23.3	0.0	6.9	71.7	0.0
Cycle Q Clear（g＿c），s	15.7	10.4	0.0	23.0	26.0	0.0	10.7	23.3	0.0	6.9	71.7	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	235	484		358	583		245	2196		174	2304	
V／C Ratio（X）	0.78	0.46		1.02	0.90		0.84	0.41		0.77	0.89	
Avail Cap（c＿a），veh／h	285	790		358	790		278	2196		278	2304	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay（d），s／veh	60.0	71.6	0.0	65.3	73.7	0.0	82.6	27.3	0.0	84.4	41.7	0.0
Incr Delay（d2），s／veh	10.6	0.7	0.0	53.1	10.3	0.0	18.7	0.6	0.0	7.0	5.9	0.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	7.9	4.8	0.0	10.6	12.6	0.0	5.3	7.9	0.0	3.2	27.9	0.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	70.6	72.3	0.0	118.5	84.0	0.0	101.3	27.8	0.0	91.5	47.6	0.0
LnGrp LOS	E	E		F	F		F	C		F	D	
Approach Vol，veh／h		405	A		889	A		1106	A		2196	A
Approach Delay，s／veh		71.5			98.2			41.6			50.3	
Approach LOS		E			F			D			D	

Timer－Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration（G＋Y＋Rc），s	21.3	95.2	32.0	31.5	17.6	98.9	27.0	36.6
Change Period（Y＋Rc），s	8.5	7.0	9.0	7.0	8.5	7.0	9.0	7.0
Max Green Setting（Gmax），s	14.5	71.0	23.0	40.0	14.5	71.0	23.0	40.0
Max Q Clear Time（g＿c＋11），s	12.7	0.0	25.0	12.4	8.9	0.0	17.7	28.0
Green Ext Time（p＿c），s	0.1	0.0	0.0	0.8	0.2	0.0	0.2	1.6

Intersection Summary

HCM 6th Ctrl Delay	59.3
HCM 6th LOS	E

Notes
Unsignalized Delay for［NBR，EBR，WBR，SBR］is excluded from calculations of the approach delay and intersection delay．

Intersection												
Int Delay, s/veh 1.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	㻢		${ }^{*}$	44			\leftrightarrow			\&	
Traffic Vol, veh/h	3	784	43	21	513	0	32	0	31	0	0	0
Future Vol, veh/h	3	784	43	21	513	0	32	0	31	0	0	0
Conflicting Peds, \#/hr	6	0	15	15	0	6	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	150	-	-	0	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	3	852	47	23	558	0	35	0	34	0	0	0

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	个 \uparrow	「	${ }^{7}$	个 \uparrow	「	${ }^{7 *}$	恌	「	${ }^{7 *}$	种	F
Traffic Volume（veh／h）	210	385	235	145	220	180	215	1785	200	245	1140	120
Future Volume（veh／h）	210	385	235	145	220	180	215	1785	200	245	1140	120
Initial $\mathrm{Q}(\mathrm{Qb})$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	0.99		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／n	1870	1870	1870	1870	1870	1870	1870	1575	1870	1870	1575	1870
Adj Flow Rate，veh／h	231	423	0	159	242	0	222	1840	0	255	1188	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.97	0.97	0.97	0.96	0.96	0.96
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h	340	652		261	598		264	2026		296	2066	
Arrive On Green	0.10	0.18	0.00	0.08	0.17	0.00	0.08	0.47	0.00	0.09	0.48	0.00
Sat Flow，veh／h	1781	3554	1585	1781	3554	1585	3456	4300	1585	3456	4300	1585
Grp Volume（v），veh／h	231	423	0	159	242	0	222	1840	0	255	1188	0
Grp Sat Flow（s），veh／h／ln	1781	1777	1585	1781	1777	1585	1728	1433	1585	1728	1433	1585
Q Serve（g＿s），s	18.0	19.9	0.0	13.2	10.9	0.0	11.4	71.2	0.0	13.1	35.7	0.0
Cycle Q Clear（g＿c），s	18.0	19.9	0.0	13.2	10.9	0.0	11.4	71.2	0.0	13.1	35.7	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	340	652		261	598		264	2026		296	2066	
V／C Ratio（X）	0.68	0.65		0.61	0.40		0.84	0.91		0.86	0.58	
Avail Cap（c＿a），veh／h	340	652		288	652		355	2026		355	2066	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay（d），s／veh	56.7	68.1	0.0	56.1	66.8	0.0	82.1	44.0	0.0	81.3	33.6	0.0
Incr Delay（d2），s／veh	5.4	5.0	0.0	3.1	0.4	0.0	12.7	7.4	0.0	16.8	1.2	0.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	1.4	9.6	0.0	6.2	5.0	0.0	5.5	25.7	0.0	6.5	12.4	0.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	62.1	73.1	0.0	59.2	67.3	0.0	94.8	51.4	0.0	98.0	34.7	0.0
LnGrp LOS	E	E		E	E		F	D		F	C	
Approach Vol，veh／h		654	A		401	A		2062	A		1443	A
Approach Delay，s／veh		69.2			64.1			56.1			45.9	
Approach LOS		E			E			E			D	

Timer－Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration $(G+Y+R c)$ ，s	22.2	93.5	24.3	40.0	23.9	91.8	27.0	37.3
Change Period $(\mathbf{Y}+\mathrm{Rc})$ ，s	8.5	7.0	9.0	7.0	8.5	7.0	9.0	7.0
Max Green Setting（Gmax），s	18.5	79.0	18.0	33.0	18.5	79.0	18.0	33.0
Max Q Clear Time（g＿c＋11），s	13.4	0.0	15.2	21.9	15.1	0.0	20.0	12.9
Green Ext Time（p＿c），s	0.3	0.0	0.1	1.3	0.3	0.0	0.0	0.8

Intersection Summary

HCM 6th Ctrl Delay 55.5
HCM 6th LOS E

Notes

User approved pedestrian interval to be less than phase max green．
Unsignalized Delay for［NBR，EBR，WBR，SBR］is excluded from calculations of the approach delay and intersection delay．

APPENDIX

Intersection: 2: Bel Pre Rd \& St. Matthew's Driveway

Movement	EB	EB	EB	WB	WB	WB	NB	SB
Directions Served	L	T	TR	L	T	T	LTR	LTR
Maximum Queue (ft)	27	12	12	30	159	157	107	30
Average Queue (ft)	2	0	0	3	31	11	41	6
95th Queue (ft)	15	6	6	18	119	76	87	26
Link Distance (ft)		314	314		638	638	228	190
Upstream Blk Time (\%)								
Queuing Penalty (veh)				125				
Storage Bay Dist (ft)	150				2			
Storage Blk Time (\%)					0			

Intersection: 141: MD 97 \& Bel Pre Rd

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB
NB											
irections Served	L	T	T	R	L	T	T	R	L	L	T
Maximum Queue (ft)	201	221	216	239	335	322	328	175	172	245	311
T											
Average Queue (ft)	114	132	86	40	258	195	193	81	82	135	182
95th Queue (ft)	193	199	188	179	372	299	320	224	171	211	302
2ink Distance (ft)		758			314	314	314				900
900											
Upstream Blk Time (\%)					13	1	1				
Queuing Penalty (veh)					43	4	5				
Storage Bay Dist (ft)	180		240	240				150	455	455	
Storage Blk Time (\%)	2	2	0	0			20	0			
Queuing Penalty (veh)	10	9	0	1			50	1			

Intersection: 141: MD 97 \& Bel Pre Rd

Movement	NB	NB	SB	SB	SB	SB	SB	SB
Directions Served	T	R	L	L	T	T	T	R
Maximum Queue (ft)	239	88	109	584	963	952	920	65
Average Queue (ft)	94	3	35	203	700	686	638	46
95th Queue (ft)	222	45	91	587	1393	1354	1269	82
Link Distance (ft)	900				1819	1819	1819	
Upstream Blk Time (\%)					2	1	0	
Queuing Penalty (veh)					0	0	0	
Storage Bay Dist (ft)		200	560	560				40
Storage Blk Time (\%)	0	0		0	17		42	2
Queuing Penalty (veh)	0	0		0	22		63	11

Network Summary

Network wide Queuing Penalty: 218

Intersection: 2: Bel Pre Rd \& St. Matthew's Driveway

Movement	EB	EB	EB	WB	WB	WB	NB
Directions Served	L	T	TR	L	T	T	LTR
Maximum Queue (ft)	16	26	28	39	32	76	98
Average Queue (ft)	1	1	2	9	2	5	34
95th Queue (ft)	10	14	20	31	20	35	70
Link Distance (ft)		318	318		636	636	230
Upstream Blk Time (\%)							
Queuing Penalty (veh)				125			
Storage Bay Dist (ft)	150				0		
Storage Blk Time (\%)					0		

Intersection: 141: MD 97 \& Bel Pre Rd

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB
NB											
Directions Served	L	T	T	R	L	T	T	R	L	L	T
T											
Maximum Queue (ft)	205	794	265	252	302	321	333	175	295	433	553
Average Queue (ft)	186	622	232	51	142	127	117	33	137	198	334
95th Queue (ft)	245	1010	320	216	274	240	253	146	277	377	577
Link Distance (ft)		755			318	318	318			580	
Upstream Blk Time (\%)		38			2	1	2				1803
Queuing Penalty (veh)		0			3	2	3				
Storage Bay Dist (ft)	180		240	240				150	455	455	
Storage Blk Time (\%)	36	30	7	0			13	1		0	2
Queuing Penalty (veh)	222	194	28	1			23	1		0	4

Intersection: 141: MD 97 \& Bel Pre Rd

Movement	NB	NB	SB	SB	SB	SB	SB	SB
Directions Served	T	R	L	L	T	T	T	R
Maximum Queue (ft)	534	225	378	439	461	407	313	69
Average Queue (ft)	309	102	198	229	208	188	145	39
95th Queue (ft)	556	285	392	425	401	371	313	83
Link Distance (ft)	1803				1632	1632	1632	
Upstream Blk Time (\%)								
Queuing Penalty (veh)								40
Storage Bay Dist (ft)		200	560	560			19	1

Network Summary

Network wide Queuing Penalty: 549

Intersection: 2: Bel Pre Rd \& St. Matthew's Driveway

Movement	EB	EB	EB	WB	WB	WB	NB	SB
Directions Served	L	T	TR	L	T	T	LTR	LTR
Maximum Queue (ft)	24	93	90	39	30	34	140	30
Average Queue (ft)	1	8	9	5	8	3	51	5
95th Queue (ft)	11	50	52	28	28	19	122	24
Link Distance (ft)		314	314	2	2	2	595	191
Upstream Blk Time (\%)				1	11	1		
Queuing Penalty (veh)				4	37	4		
Storage Bay Dist (ft)	150							
Storage Blk Time (\%)		0						

Intersection: 141: MD 97 \& Bel Pre Rd

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB
NB											
Directions Served	L	T	T	R	L	T	T	R	L	L	T
T											
Maximum Queue (ft)	204	343	248	246	332	337	336	175	165	224	321
Average Queue (ft)	120	135	93	31	256	190	206	88	81	125	185
158											
95th Queue (ft)	206	242	204	155	376	315	337	230	169	194	313
Link Distance (ft)		758			314	314	314				900
Upstream Blk Time (\%)					15	1	3				
Queuing Penalty (veh)					49	5	11				
Storage Bay Dist (ft)	180		240	240				150	455	455	
Storage BIk Time (\%)	4	2	0	1			24	0			
Queuing Penalty (veh)	18	8	1	1			61	1			

Intersection: 141: MD 97 \& Bel Pre Rd

Movement	NB	SB	SB	SB	SB	SB	SB
Directions Served	T	L	L	T	T	T	R
Maximum Queue (ft)	220	143	584	836	827	796	67
Average Queue (ft)	99	34	155	537	522	484	43
95th Queue (ft)	221	96	488	796	778	746	84
Link Distance (ft)	900			1819	1819	1819	
Upstream Blk Time (\%)							
Queuing Penalty (veh)							40
Storage Bay Dist (ft)		560	560			40	1
Storage Blk Time (\%)	0		0	10		60	8

Intersection: 200:

Movement	EB	EB	WB	WB	WB
Directions Served	T	T	T	T	T
Maximum Queue (ft)	25	31	28	168	147
Average Queue (ft)	3	6	2	57	32
95th Queue (ft)	19	25	18	169	107
Link Distance (ft)	2	2	100	100	100
Upstream Blk Time (\%)	2	3		11	1
Queuing Penalty (veh)	3	6		36	4
Storage Bay Dist (ft)					

Intersection: 201:

Movement	WB	WB
Directions Served	T	T
Maximum Queue (ft)	193	166
Average Queue (ft)	35	15
95th Queue (ft)	166	108
Link Distance (ft)	1560	1560
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty: 329

Intersection: 2: Bel Pre Rd \& St. Matthew's Driveway

Movement	EB	EB	EB	WB	WB	WB	NB
Directions Served	L	T	TR	L	T	T	LTR
Maximum Queue (ft)	26	197	220	44	24	12	74
Average Queue (ft)	1	18	23	9	2	0	36
95th Queue (ft)	11	107	125	32	18	6	63
Link Distance (ft)		311	311	1	1	1	596
Upstream Blk Time (\%)		0	0	4	2	0	
Queuing Penalty (veh)		0	1	7	4	1	
Storage Bay Dist (ft)	150						
Storage Blk Time (\%)		1					
Queuing Penalty (veh)		0					

Intersection: 141: MD 97 \& Bel Pre Rd

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB
NB											
Directions Served	L	T	T	R	L	T	T	R	L	L	T
T											
Maximum Queue (ft)	205	786	265	252	306	294	304	175	317	479	572
Average Queue (ft)	181	542	224	27	135	114	113	25	132	190	359
95th Queue (ft)	249	955	328	154	266	210	224	127	264	386	589
Link Distance (ft)		755			311	311	311			582	
Upstream Blk Time (\%)		25			2	0	1				1803
Queuing Penalty (veh)		0			4	1	2				
Storage Bay Dist (ft)	180		240	240				150	455	455	
Storage BIk Time (\%)	27	32	4	0			7	0			3
Queuing Penalty (veh)	169	202	18	1			13	0		5	

Intersection: 141: MD 97 \& Bel Pre Rd

Movement	NB	NB	SB	SB	SB	SB	SB	SB
Directions Served	T	R	L	L	T	T	T	R
Maximum Queue (ft)	543	225	388	409	402	330	302	65
Average Queue (ft)	339	118	168	198	205	196	152	36
95th Queue (ft)	573	302	321	355	369	343	307	80
Link Distance (ft)	1803				1634	1634	1634	
Upstream Blk Time (\%)								
Queuing Penalty (veh)								40
Storage Bay Dist (ft)		200	560	560			18	1

Intersection: 200:

Movement	EB	EB	WB	WB	WB
Directions Served	T	T	T	T	T
Maximum Queue (ft)	31	78	24	116	100
Average Queue (ft)	4	17	1	19	13
95th Queue (ft)	21	57	12	83	62
Link Distance (ft)	1	1	121	121	121
Upstream Blk Time (\%)	3	4		1	0
Queuing Penalty (veh)	12	18		1	0
Storage Bay Dist (ft)					

Intersection: 201:

Movement
Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)

Network Summary
Network wide Queuing Penalty: 531

APPENDIX

Concept Plans

[^0]: ehicles = 20380

[^1]: Vehicles = 20368

