Exhibit II: Objectives, Scope, and Methodology

The objective of our Inspection was to identify and document any project management deficiencies during the construction of the Silver Spring Transit Center. In achieving our objectives, we attempted to determine which project management controls failed, how these controls should have functioned, why they failed, and what measures should be taken to ensure controls will be effective in future projects undertaken by Montgomery County.

The SSTC project implemented many controls, but some significant deficiencies identified by KCE Structural Engineers (KCE) and Whitlock Dalrymple Poston & Associates, P.C. (WDP) in the structure were not identified and/or not corrected during construction. Our review examined the key project controls that were in place during construction of the SSTC in order to determine:

- how the structural deficiencies occurred,
- the design and implementation of each construction project control specific to the SSTC,
- which, if any project control failed during the construction, resulting in a deficiency,
- the cause of the project control failure, and
- whether necessary actions are being taken to ensure that project controls will be effective during remediation.

In order to address these questions, a report on the Silver Spring Transit Center entitled "Analysis of Project Controls" was prepared at our request by the Alpha Corporation. That report, along with recommendations, lessons learned, and the appendices referenced in their analysis, is contained in its entirety in Exhibit I of this report. Work papers supporting information contained in Exhibit I have been independently assembled and referenced, and the report extensively considered by OIG staff.

We consulted with the subject matter expert we retained to provide professional expertise, Alpha Corporation, to ensure the accuracy of the technical aspects of the analysis prepared by the OIG staff.

We conducted this review from May 2013 through March 2014, in accordance with the Quality Standards for Inspection and Evaluation issued by the Council of the Inspectors General on Integrity and Efficiency. Those standards require that we plan and perform our work to obtain sufficient, appropriate evidence to provide a reasonable basis for our findings and conclusions based on our objectives. We believe that the evidence obtained provides a reasonable basis for our findings and conclusions based on our objectives.

We relied heavily on the data supporting the KCE report that is publically disclosed on the DGS website, but also reviewed meeting minutes, and other information developed during the construction process. We retained copies only of those documents used by us in direct support of our analysis. When additional data was needed for us to develop an opinion, or when available data referenced other data that was not reviewed by KCE, we requested that information and have incorporated it into our work papers.

Our review methodology included:

- Review of the evaluation report and evidence prepared by KCE Structural Engineers on behalf of Montgomery County Maryland
- Review of the evaluation report prepared by Whitlock Dalrymple Poston & Associates (WDP) on behalf of the Washington Metropolitan Area Transportation Authority
- Review of Montgomery Council committee and regular meeting minutes and analyst packet relating to Capital Improvement Program submissions and changes.
- Identification of construction deficiencies reported in KCE and WDP reports that would likely have been subject to project or management control.
- Determining potential controls that should be tested to confirm the existence, success, or failure of the control during the inspection process.
- Identification and contracting with a Subject Matter Expert to assist in in assessing the sufficiency and adequacy of the controls.
- Evaluation of construction project vendor contracts and construction and performance specifications.
- Evaluation of construction project design, structural, and technical drawings.
- Close review of our subject matter expert's analysis and supporting documentation
- Close consultation with our subject matter expert regarding engineering construction and related materials methods techniques, industry standards, and related technical issues.
- Review of meeting minutes of the various oversight groups engaged in the construction project.
- Review of other construction documents.
- Review of industry standards and building codes that related to the project.
- Review of the Montgomery County Special Inspections Program.

Exhibit III: Standards

The following standards were either used in the design criteria for the SSTC, or were referenced within this report:

American Concrete Institute (ACI), Farmington Hills, Michigan

- ACI 117 Standard Tolerances for Concrete Construction and Materials.
- ACI 214R Evaluation of Strength Test Results of Concrete
- ACI 301 Specifications for Structural Concrete for Buildings
- ACI 302.1R Guide for Floor and Slab Construction
- ACI 304 Recommended Practice for Measuring, Mixing, Transporting and Placing Concrete
- ACI 304R Guide for Measuring, Mixing, Transporting and Placing Concrete
- ACI 305R Hot Weather Concreting
- ACI 306R Cold Weather Concreting
- ACI 306.1 Standard Specification for Cold Weather Concreting
- ACI 308 Standard Specification for Curing Concrete.
- ACI 308R Guide to Curing Concrete
- ACI 311.1R Manual for Concrete Inspection
- ACI 311.4R Guide for Concrete Inspection
- ACI 318 Building Code Requirements for Structural Concrete.

American Institute of Steel Construction (AISC) - Chicago, Illinois

- Specifications for Design, Fabrication, and Erection of Structural Steel for Buildings

ASTM International (formerly American Society for Testing and Materials), West Conshohocken, Pennsylvania.

- ASTM C31/C31M Standard Practice for Making and Curing Concrete Test Specimens in the Field
- ASTM C39/C39M Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
- ASTM C94/C94M Standard Specifications for Ready Mixed Concrete
- ASTM C125 Standard Terminology

Exhibit III: Standards

- ASTM C172 Standard Practice for Sampling Freshly Mixed Concrete
- ASTM C1064C/C1064M Standard Test Method for Temperature of Freshly Mixed Hydraulic-Cement Concrete

Concrete Reinforcing Steel Institute (CRSI), Schaumburg, Illinois

• MSP2 - Manual of Standard Practice

International Code Council (ICC) - Washington, District of Columbia

• 2003 International Building Code.

Post-Tensioning Institute (PTI) - Farmington Hills, Michigan

• Specifications for Bonded Single Strand or Multi-Strand Tendons for use in Corrosive Environments.

Washington Metropolitan Area Transit Authority (WMATA) - Washington, District of Columbia

• WMATA Manual of Design Criteria – Release 6.

Remainder of this Page Intentionally Blank

Exhibit IV: Comparison of KCE In-Situ Compressive Strength & Petrographic Test Pairing to Balter Construction Inspection Tests

The following chart isolated areas in the SSTC where we determined close adjacencies between Balter and KCE compressive strength and composition analysis testing that allowed for a relatively close comparison of the testing results. Tests made at (or nearly at) the same concrete location at the time of construction and after completion of the structure should exhibit the nearly same compressive strength. Records maintain by Balter during construction and the KCE testing firms during core collection both noted the approximate location of the sample in terms of a column and row grid matrix in use at the SSTC. This grid matrix is indicated on most structural drawings.

How to Read:

	Petrographic Test Pairings to Balter (RBB) Construction Inspection Tests												
Pour Information Testing Information				Strength	Grid Location			Concrete A		KCE psi as %	KCE psi as %		
Date	#	Core #	KCE Tset Type	(psi)	Row	Column	Entrained	Entrapped	w/c	unhydrated	of 1st RBB	of 2nd RBB	
		121	Compressive Strength	11,040	A3 - A8	8 - 9					81% Δ	80% Δ	
7-Dec-10	2B	122	Petrographic		A3 - A8	8 - 9	6.00%		.3540				
7-Dec-10	ZD	123	Petrographic		A2 - A3	7 - 8	5.20%	0.70%	.3545	7% - 11%			
		124	Compressive Strength	10,060	A2 - A3	7 - 8					74%	73%	
CE-Reporte	d averag	e compre	ssive strength - Pour 2B	8,810							65%	64%	
5-day RBB 1	est Cylin	nder Batc	h 91111: Test Report # 486	13,575	A2.8 - A3	8 - 9	5.50%		.26				
3-day RBB 1	est Cylir	nder Batc	h 91160: Test Report # 495	13,740	A1 - A2	7 - 8	5.30%		.24				

In the sample above for Pour 2 B, a first comparison set was located for KCE testing extracted in the area between Rows A3 and A8 at Columns 8 to 9. Two testing cores were extracted adjacent to each other. One core (#121) was used to conduct a compressive strength test, and the second (#122) was used to conduct the petrographic analysis. By reference to Balter inspection tickets, we found that the concrete specimen cylinder represented in Balter test report # 486 was for the concrete that was placed at the location where the KCE cores had been extracted. Comparison of the of the KCE and Balter test results should complement each other as the tests were conducted on the same batch of concrete.

For core # 121, we note that the KCE reported compressive strength was 11,040 psi, while Balter reported a compressive strength of 13,575 psi. The first of the two rightmost columns indicate that the KCE sample demonstrated 81% of the strength reported by Balter (and 80% of the second Balter sample reported by test #495). For all of the compressive strength tests it conducted on Pour 2B, KCE determined that the average strength was 8,810 psi.

KCE's petrographic analysis conducted on core # 122 indicates that the in-situ concrete at this location exhibited a water to cement ratio (w/c) between .35 and .40, while Balter reported that w/c at this area was .26. KCE reported entrained air of 6%, while Balter reported 5.5%.

Exhibit IV: Comparison of KCE In-Situ Compressive Strength & Petrographic Test Pairing to Balter Construction Inspection Tests

hart 1:			of KCE In-Situ Compres Test Pairings to Balter			nection To	ete				Average KCE parts as % of RBB	5I 62%
our Inform		graphic	Testing Information	Strength		ocation	515	Concrete A	Attributes		KCE psi as %	KCE psi a
Date	#	Core #	KCE T set Type	(psi)	Row	Column	Entrained	Entrapped	w/c	unhydrated	of 1st RBB	of 2nd R
Date	#		NOL 1 Set 1 ype				Linuameu	Linuapped		unnyunateu		
		6	Compressive Strength	6,690	A2 - A4	3 - 4						46%
18-Oct-10	1C	47	Petrographic		A2 - A4	3 - 4	5.00%	0.400/	.3843	50/ 400/		
		48	Petrographic	C 010	A2 - A4	3 - 4	1.40%	6.10%	.3545	5% - 10%		420/
			ssive strength - Pour 1C h 87901: Test Report # 387 *	6,210 14,470	A1 - A3	3.3 - 4	4.20%		.25			43%
	est Cyll		11 0/901: Test Report # 30/	14,470	AT-AD	3.3 - 4	4.20%		.20			
20-Dec-10	1D	72	Compressive Strength	7,100	A2 - A4	2 - 3						49%
		71	Petrographic		A2 - A4	2 - 3	6.00%		.3540		_	
			ssive strength - Pour 1D	6,780							•	47%
6-day RBB 1	est Cyli	nder Batc	h91832: Test Report # 522	14,400	A2 - A4	2 - 3	4.10%		.26			
		95	Compressive Strength	9,370	C1-C6	10 - 10.1					66%	68%
12-Nov-10	1E	96	Petrographic		C1-C6	10 - 10.1	6.00%		.3540			
12-1409-10	12	99	Petrographic		C1 - C6 (c5)	10 - 10.1	2.60%	3.00%	.3545	7% - 13%		min
		100	Compressive Strength	5,070	C1 - C6 (c5)	10 - 10.1					36% ↓	37%
· ·			ssive strength - Pour 1E	6,740							47% ▼	49%
•			h 89739: Test Report # 462	14,270	C6	10.1	5.10%		.25			
day RBB 1	est Cyli	nder Batc	h 89748: Test Report # 463	13,735	C6	10.1	4.40%		.26			
		105	Petrographic		C1-C6	7 - 8	7.00%		.3540			
20 Dec 40	1F	106	Compressive Strength	9,350	C1-C6	7 - 8						69%
30-Dec-10	(F	107	Compressive Strength	9,000	C1-C6	7 - 8						67%
		108	Petrographic		C1-C6	7 - 8	6.30%	0.30%	.3545	8% - 13%		
CE-Reporte	d averag	e compre	ssive strength - Pour 1F	6,990								52%
-day RBB 1	fest Cyli	nder Batc	h 92297: Test Report # 551	13,495	C3-C8	7 - 8	5.20%		.26			
		79	Petrographic		C1-C6	5 - 6	7.00%		< .38			
		80	Compressive Strength	7,990	C1-C6	5-6	1.0070				60%	64%
8-Feb-11	1G	85	Compressive Strength	1,000	C1-C6	3 - 4					00,0	01/0
		86	Petrographic	7,770	C1-C6	3 - 4	6.30%	3.90%	.3545	8% - 12 %	58%	62%
CE-Reporte	d averag	e compre	ssive strength - Pour 1G	6,490							48% ▼	52%
			h 93856: Test Report # 642	13,410	C - C5	5 - 6	5.50%		.26			
-day RBB 1	est Cyli	nder Batc	h 93860: Test Report # 644	12,505	C - C5	5 - 6	5.50%		.26			
		111	Compressive Strength	7,920	A2 - A3	10.2 - 10.9					57%	57%
		112	Petrographic	.,020	A2 - A3	10.2 - 10.3	4.50%		.3545		0170	01/0
2-Nov-10	2A	115	Compressive Strength	8,160	A2 - A3	10.2 - 10.9					58%	59%
		116	Petrographic	-,	A2 - A3	10.2 - 10.9	2.00%	1.60%	.3545	8% - 13%		
CE-Reporte	d averag	e compre	ssive strength - Pour 2A	6,440							46% ▼	47%
-day RBB 1	est Cyli	nder Batc	h 88958: Test Report # 436	13,965	A2	10.3	4.30%		.26			
-day RBB 1	est Cyli	nder Batc	h 88980: Test Report # 439	13,815	A3	10.7	4.50%		.25			
		121	Compressive Strength	11,040	A3 - A8	8 - 9					81% Δ	80%
		122	Petrographic	,••••	A3 - A8	8 - 9	6.00%		.3540		01/0 4	00/0
7-Dec-10	2B	123	Petrographic		A2 - A3	7 - 8	5.20%	0.70%	.3545	7% - 11%		
		124	Compressive Strength	10,060	A2 - A3	7 - 8					74%	73%
CE-Reporte	d averag		ssive strength - Pour 2B	8,810							65%	64%
-day RBB 1	est Cyli	nder Batc	h 91111: Test Report # 486	13,575	A2.8 - A3	8 - 9	5.50%		.26			
-day RBB 1	est Cyli	nder Batc	h 91160: Test Report # 495	13,740	A1 - A2	7 - 8	5.30%		.24			
		127	Petrographic		A4 - A9	5 - 6	7.00%		< .38		max	
		127	Compressive Strength	10,710	A4 - A9 A4 - A9	5-6			00		86% Δ	74%
14-Jan-11	2C	120	Petrographic	10,710	A4 - A9 A4 - A9	3 - 4	5.90%	1.00%	.3545	7% - 12%	0070 1	170
		131	Compressive Strength	5,330	A4 - A9 A4 - A9	3-4 3-4	0.0076	1.00 /0	40	170 = 1∠70	43% ↓	37%
CF-Renorto	d averer		ssive strength - Pour 2C	6,870	14 - A3	J-4					43% ↓ 55%	48%
			h 93009: Test Report # 590	12,480	A3 - B	3.3 - 4	4.50%		.26		5570	-070
			h 93019: Test Report # 591	14,390	A3 - B	3.3 - 4	5.40%		.20			
			•	,000				0.0000				
31-Jan-11	2D	141	Petrographic	o 1	A4 - A9	2 - 3	6.60%	0.60%	.3545	8% - 13%	700/	
		142	Compressive Strength	8,460	A4 - A9	2 - 3					72%	57%
			ssive strength - Pour 2D	8,070	A4 D	0.0	6 400/		05		69%	54%
•			h 93512: Test Report # 615	11,750	A4 - B	2-3	6.10%		.25			
-uay KBB 1	est Cyli	nuer Batc	h 93517: Test Report # 616	14,905	A4 - B	2 - 3	4.70%		.26			
ours 1 A, 1 ↓ ▼	KCE C	ore samp	not part of the sample set used le less than 50% strength of pr average for pour area less that	oximate RBB-	tested strength			pressive streng	Average	rographic test Unhydrated ious Material		
•				5			-					
▼ ∆		ore samo	le at least 80% strength of prox	kimate RBB-te	sted strenath				Low	Hi		

Exhibit V:

Comparison of Same Batch, Inspection Station to Surface Deck Field Cured Strength Results

The following charts capture compressive strength test results for those sets of comparison specimens cast from the same batch of concrete. One set of cylinders was cast at the inspection station. The second set was cast on the deck after the concrete had been pumped from the truck to the surface. Up to three comparison sets (a total of 6 specimen cylinders) were cast for each pour that exceeded 50 cubic yards of concrete.

How to Read:

Locate the first box below for Pour 1 A. Three comparison sets were cast for this pour – Set 1 from truck # 65, Set 2 from truck # 68, and Set 3 from truck 411.

For truck 65, the tests conducted on the specimens that were cast at the inspection station 26 minutes after leaving the concrete plant were reported in Robert B. Balter Company's Report of Concrete Cylinder Test, report number 283, while results for the specimens collected on the deck 41 minutes after batching were contained in report number 284. Note that if this batch of concrete exceeded the 90 minute maximum batch age, it would be indicated in this column. If water had been added to the mix after the specimen was collected at the inspection station, it would be reported in the column "Added H₂O (gal)".

Three days after the specimens were cast, two cylinders from each specimen set were tested for compressive strength. Specimens from the inspection station were measured at 5,860 and 4,730 psi, while the specimens from the deck were measured at 6,130 and 6,120 psi. In this example, KCE records did not include twenty-eight day inspection station strength test results.

Co	ncrete Ba	itch	Sample		RBB Strength Test	Slump	Air	Added	Revs	W/C	Time	3-Day S	trength	28-Day St	rength
Pour	Truck #	Ticket #	Sample	#	Location	Siump	Content	H ₂ O (gal)	Revs	ratio	Lapse	Sample 1	Sample 2	Sample 1	Sample 2
	65	85320	Set 1	283	Inspection Station	8.0	6.0%	0.0	125	0.25	26	5,860	4,730	4,730	
	00	00020	Sell	284	Deck	8.0	5.0%	0.0	133	0.25	41	6,130	6,120		
1A	68	85354	Set 2	291	Inspection Station	8.0	5.7%	0.0	110	0.26	65	5,750	5,900	Data Not	
		00004	Sel 2	292	Deck	7.3	4.4%	0.0	181	0.26	90	6,270	6,690	Avialable	
	411	85413	Set 3	299	Inspection Station	8.0	6.8%	0.0	232	0.27	65	7,870	8,130	Avidiable	(DNA)
	411	00413	Sels	300	Deck	7.3	5.9%	0.0	265	0.27	75	7,920	7,610		
	50	86785	Set 1	334	Inspection Station	8.0	6.9%	0.0	115	0.26	37				
	56			335	Deck	7.5	6.4%	1	Data Not Av	vailable		Data			
1B	67	86827	Set 2	342	Inspection Station	8.0	6.5%	0.0	105	0.26	63				
				343	Deck	8.0	6.0%	I	Data Not Available				Not Avialable		
	32	86859	Set 3	349	Inspection Station	8.0	5.9%	0.0	187	0.26	59			0010	
	32	00009	Sels	350	Deck	7.0	6.0%	I	Data Not Av	vailable					
				373	Inspection Station	8.0	4.5%	0.0	125	0.25	50				
	67	87816	Set 1	374	Deck	8.0	5.4%	0.0	DNA	0.25	65		_		
	70	87855		381	Inspection Station	8.0	4.2%	0.0	129	0.25	68		Da		
10	78		Set 2	382	Deck	7.5	4.0%	0.0	DNA	0.25	86		N Avial		
	69	87901	Set 3	387	Inspection Station	8.0	4.2%	0.0	73	0.25	51		Avia	abie	
	69	0/901	Set 3	388	Deck	7.5	4.7%	0.0	DNA	0.25	81				

Exhibit V: Comparison of Same Batch, Inspection Station to Surface Deck Field Cured Strength Results

	ncrete Batch	Sample		RBB Strength Test	Slump	Air	Added	Revs	W/C	Time	3-Day S	•	28-Day S	-
Pour	Truck # Ticket #	•	#	Location		Content	H ₂ O (gal)		ratio	Lapse	Sample 1	Sample 2	Sample 1	Sample 2
	67 91818	Set 1	518	Inspection Station	6.5	5.1%	20.0	71	0.25	53	10,480	10,220	13,100	13,440
	01 01010	0001	519	Deck	6.5	5.3%	20.0	71	0.25	74	5,140	5,020	10,620	10,890
1 D	77 91837	Set 2	523	Inspection Station	7.0	6.2%	0.0	112	0.26	45	9,190	9,580	12,100	11,820
	79 91883		524	Deck	8.0	5.7%	0.0	112	0.26	65	3,820	3,930	7,550	7,410
		Set 3	530	Inspection Station	7.0	5.7%	0.0	250	0.26	53	9,910	10,190	11,470	11,460
			531	Deck	7.5	5.9%	0.0	250	0.26	73	4,460	4,130	9,120	9,510
	68 89704	Set 1	454	Inspection Station	7.5	5.5%	10.0	100	0.27	52	9,240	9,060	10,020	10,070
	00 00704	0001	455	Deck	7.5	5.7%	10.0	DNA	0.29	67	5,470	5,200	11,630	11,560
1 E (a)	29 89730	Set 2	460	Inspection Station	7.0	5.0%	10.0	175	0.27	41	5,530	5,030	11,430	11,530
• = (4)			461	Deck	7.5	5.5%	10.0	DNA	0.29	46	8,710	8,320	10,080	10,070
	69 89793	Set 3	468	Inspection Station	8.0	4.6%	0.0	83	0.25	69	5,380	5,450	12,390	12,500
			469	Deck	8.0	5.0%	0.0	DNA	0.25	87	9,920	10,280	12,020	11,850
	77 92269	Set 1	543	Inspection Station	7.5	5.0%	0.0	116	0.26	19	6,560	6,730	12,220	11,700
	11 92209	Sell	544	Deck	7.0	4.7%	0.0	150	0.26	44	6,910	6,960	8,780	9,340
1F	62 92282	Set 2	547	Inspection Station	8.0	6.3%	0.0	120	0.26	45	7,930	7,810	12,690	12,660
11		0012	548	Deck	7.5	5.8%	0.0	153	0.26	75	6,120	6,670	9,160	9,250
	32 92316	Set 3	554	Inspection Station	8.0	6.1%	0.0	128	0.25	52	5,700	5,310	12,040	11,910
	02 02010	0000	555	Deck	7.5	5.9%	15.0	160	0.27	101	7,190	7,550	8,680	8,730
		C + 1	642	Inspection Station	7.0	5.5%	0.0	185	0.26	44	8,150	8,380	12,140	12,260
	67 93856	Set 1	643	Deck	7.3	5.0%	0.0	211	0.26	66	7,200	7,080	10,260	10,870
	co 02000	0.40	649	Inspection Station	8.0	4.5%	0.0	33	0.25	65	9,690	9,950	13,630	13,510
1 G	69 93889	Set 2	650	Deck	7.5	4.3%	0.0	33	0.25	80	6,230	6,080	11,630	11,500
	61 02012	Set 3	654	Inspection Station	7.5	4.9%	0.0	250	0.26	51	10,060	9,680	12,210	12,400
	61 93913		655	Deck	7.0	4.8%	0.0	250	0.26	67	6,130	6,750	11,350	10,950
			667	Inspection Station	7.5	4.9%	12.0	120	0.26	49	7,610	7,710	11,550	11,780
	65 94393	Set 1	668	Deck	8.0	4.9%	0.0	131	0.20	49 59	6,320	6,520	8,590	9,750
			674	Inspection Station	8.0	4.9%	15.0	119	0.26	34	7,650	7,860	12,030	11,530
1 H	84 94422	Set 2	675	Deck	8.0	4.6%	10.0	137	0.26	47	7,770	7,580	11,490	11,170
ŀ			682	Inspection Station	7.5	4.8%	0.0	156	0.26	43	7,380	6,870	10,840	10,910
	411 94476	Set 3	683	Deck	7.0	4.5%	0.0	170	0.26	49	7,380	7,350	10,120	10,000
		1	428	Inspection Station	8.0	4.8%	0.0	98	0.26	59	5,150	5,520	12,550	13,470
	67 88929	Set 1	420	Deck	8.0	4.8%	0.0	90 98	0.20	74	7,620	5,520 7,610	12,550	12,870
2A			434	Inspection Station	8.0	4.2%	0.0	188	0.20	58	5,540	5,700	12,790	12,650
	37 88953	Set 2	435	Deck	8.0	4.7%	0.0	188	0.26	78	6,640	6,610	11,410	11,550
			100	Dook	0.0		0.0	100	0.20	10	0,010		11,410	
	67 91088	Set 1	481	Inspection Station	8.0	6.3%	0.0	195	0.25	41	4,080	4,150	11,150	10,670
			482	Deck	8.0	5.1%	0.0	195	0.25	62	4,270	4,590	9,280	8,840
2 B	69 91152	Set 2	493	Inspection Station	7.5	5.1%	0.0	119	0.26	77	6,840	6,910	12,680	12,790
			494	Deck	8.0	4.6%	0.0	119	0.26	101	5,990	6,060	11,180	11,310
	37 91251	Set 3	507 509	Inspection Station	7.0 7.0	4.7% 4.2%	0.0 0.0	88 88	DNA	78 94	4,300	3,960	11,240	10,130
		I	508	Deck	1	4.Z%	0.0	οŏ	DNA	94	5,750	5,740	10,100	10,260
	67 92950	Set 1	578	Inspection Station	7.0	4.5%	0.0	176	0.26	57	7,060	6,490	11,400	11,600
	01 92930	000	579	Deck	8.0	4.3%	20.0	195	0.30	67	7,080	7,170	11,200	11,140
2 C	81 92978	Set 2	585	Inspection Station	8.0	5.6%	0.0	110	0.26	60	5,380	5,300	12,890	13,120
			586	Deck	8.0	5.4%	0.0	110	0.26	75	8,030	8,060	12,830	12,700
	61 93053	Set 3	594	Inspection Station	7.0	4.8%	0.0	250	0.26	95	6,380	6,590	13,170	12,650
			595	Deck	8.0	5.1%	0.0	250	0.26	109	5,390	5,160	9,620	9,110
	67 00500	Catt	613	Inspection Station	7.0	6.2%	0.0	105	0.25	50	6,360	6,530	10,820	11,410
	67 93509	Set 1	614	Deck	8.0	6.0%	15.0	131	DNA	64	6,890	6,580	10,900	10,970
2	82 93538	504.2	620	Inspection Station	7.5	5.4%	0.0	240	0.25	91	6,980	7,470	12,340	12,110
2 D	02 90038	Set 2	621	Deck	8.0	5.0%	15.0	280	DNA	113	5,850	6,420	13,550	13,660
	57 93600	Set 3	627	Inspection Station	8.0	7.0%	25.0	252	0.25	56	7,270	6,790	11,360	11,290
	31 93000	3013	628	Deck	7.0	6.7%	0.0	279	DNA	75	6,400	6,520	10,670	10,490
			767	Inspection Station	7.0	5.0%	0.0	126	0.25	40	5,830	5,830	11,720	11,800
	78 96174	Set 1	768	Deck	8.0	4.8%	15.0	140	0.23	40 51	5,000	5,000 5,190	9,230	9,120
2 I (a)			770	Inspection Station	7.5	4.9%	0.0	255	0.27	48	6,730	6,330	12,790	13,020
	79 96187	Set 2	771		7.0	4.5%	37.0	291	0.28	123	4,160	4,050	7,780	7,590
		1		2.001	1.0	1.0/0	07.0	201	0.20	120	т, 100	7,000	1,100	1,000

Source: Robert B. Balter Company Report of Concrete Cylinder Test and Rockville Fuel and Feed Company, Inc. job batching and delivery tickets.

3-Day Strength results for Pour 1 F were actually tested on Day 4.

For Set 2 of Pour 1 H, truck numbers differ (84 & 86), an apparent transcription error by the inspector as the batch ticket # is the same for both comparative specimens.

Exhibit VI: Chief Administrative Officer's Statement to County Council

