The LIFEPAK 15 monitor/defibrillator brings to market the next generation of monitoring solutions.

The LIFEPAK 15 monitor/defibrillator has built-in Microstream® and Rainbow® SET® technology that allows continuous monitoring of four key respiratory parameters: End-tidal carbon dioxide (EtCO₂), pulse oximetry (SpO₂), carbon monoxide (SpCO) and methemoglobin (SpMet). The new color display and large screen allows for easy viewing. Durable and reliable, the 15 is built for the toughest environments, and offers the number one choice for respiratory monitoring.

We made it our job to make your job easier than ever before with innovative diagnostic and respiratory monitoring capabilities.
Clinically Innovative

Noninvasive measurement of carbon monoxide and methemoglobin in the blood

The noninvasive measurement of carboxyhemoglobin is referred to as SpCO and the noninvasive measurement of methemoglobin is referred to as SpMet.

SpCO
Carbon monoxide (CO) is a colorless, odorless and tasteless gas given off by the incomplete combustion of carbon-containing fuels. CO is released from many sources including fires, heaters, car and boat exhaust, cigarettes and gas-powered generators. CO binds to hemoglobin, the oxygen carrying molecule in the blood, with an affinity of approximately 250 times that of oxygen. This affinity prevents oxygen from binding to hemoglobin and thus oxygen is not available to the tissues of the body. The heart and brain are especially vulnerable.

In the past, detection of CO poisoning has been primarily limited to expensive and invasive blood draws. Blood draws are not ordered in the field and remain a painful and costly procedure in the hospital. CO poisoning is the number one cause of poisoning deaths in industrialized countries and often dubbed the “silent killer.” The LIFEPAK 15 monitor/defibrillator alerts the rescuer if the SpCO levels reach greater than 10%, aiding in treatment and transport decisions, helping to improve patient outcomes.

SpMet
Methemoglobin is an abnormal form of hemoglobin produced by the oxidation of ferrous iron that does not have the capacity to carry oxygen. This can be caused by commonly prescribed drugs used in the hospital or outpatient setting, such as nitrates and the ‘caines’. Cetacaine, used in intubation, is a common cause of methemoglobinema. Excessive amounts of methemoglobin leads to methemoglobinema which causes lack of oxygen transport to the tissues of the body and can lead to death. High levels of methemoglobin result in hypoxemia to the body tissues and can manifest itself in cardiovascular and central nervous system problems. The LIFEPAK 15 monitor/defibrillator alerts rescuers if methemoglobin levels are above normal to further help with treatment and transport decisions.
Physio-Control Introduces the First Monitor/Defibrillator with Rainbow SET Technology

Benefits of Capnography

The numerous benefits and various applications of capnography are quickly being acknowledged across the world. Capnography is an objective monitoring tool essential for quickly determining ventilatory status.

- Capnography can be used to assess patients with respiratory diseases such as chronic obstructive pulmonary disease (COPD), congestive heart failure (CHF), and asthma to help diagnose and assess treatment.
- The addition of a capnograph may anticipate a patient’s oxygen desaturation by warning of a decrease in respiratory rate and subsequent rise in end-tidal carbon dioxide.
- In the OR setting, these monitors together were judged to potentially prevent 93% of respiratory mishaps, such as a misplaced or dislodged endo-tracheal tube.
- Capnography can be used to verify the effectiveness of resuscitation efforts, during bag ventilation and chest compressions, as well as assessing adequacy of ventilation during medication administration or procedural sedation.
- Visual patient inspection is not enough. Capnography monitoring is the only true way to tell if a person is adequately breathing breath to breath. When paired with SpO2, which provides information regarding adequate perfusion and general hypoxia, capnography can provide a more complete picture of ventilatory status.

Try this on yourself

Measure SpO2 and EtCO2 readings after holding your breath for at least 30 sec to simulate apnea

- Which parameter tells you first about the apnea?
- Now add oxygen. What happens?

Worldwide, many EMS systems have mandated capnography as a standard of care for verifying proper endotracheal tube (ETT) placement.
REFERENCES AND WEBSITES
1 RAD-57 signal extraction pulse co-oximeter. 2007 Masimo Corp.
2 Masimo Literature 4054C-7419-0805

For further information, please contact your sales representative at 1.800.442.1142 or visit our website at www.physio-control.com.