Supply Pumper With Back Up Line
(Revised March 2015)

Driver Performance Competency: The driver candidate shall properly position the pumper as to not impede incoming units, flush the hydrant, connect the Humat Valve to the hydrant, set up for a “heavy water” hookup, and charge the Attack Engine’s supply line. After the hydrant is charged the driver candidate will expand upon and provide uninterrupted water supply to the Attack Engine.

Candidate will determine the friction loss to Attack Pumper based a sustained fire flow of 500 GPM. Candidate will determine if boosting the pressure is necessary based on a relay pressure of 20 PSI for LDH or 50 PSI for 3”.

Candidate will then charge a 2” 300’ preconnected line pulled off the Supply Pumper and charge it with Class A Foam Solution at a pressure based on FCGO 10-03 (plain water flow).

Before beginning this evolution there will be 250’ of 4” hose laid out with a Blitz Nozzle attached to it to simulate actual fire flow. Everyone participating in this evolution is to ensure that this has been deployed in a safe manner prior to this evolution commencing.

Phase 1 – Prepare Water Supply

1. Position Engine as not to impede incoming units and spot hydrant with appropriate intake. ________(2)

2. Stop Engine and apply parking brake. ________(2)

3. Engage pump. Listen for pump to engage, speedometer reading approximately 10-15 MPH and green “Ok To Pump When Lit” indicator light in cab should be illuminated. Operator should also hear air compressor engage. ________(2)

4. Place wheel chock at appropriate location. ________(1)

5. Operator will confirm the following: Pump panel is illuminated, FoamLogix Pump is on, Air Compressor is on, there is positive discharge pressure on the Master Discharge Gauge and the “Tank To Pump” valve is open. ________(1)

6. Inspect hydrant for damage, obstructions, missing blind caps, and operating nut/bonnet. ________(2)
7. Remove 4 ½” blind cap from hydrant, partially open hydrant and flush until water is clear. Close hydrant. (2)

Phase 2 - Ensure Water Supply to Attack Engine

8. Attach Humat to hydrant with butterfly valve handle in closed position, place at least one 2 1/2” female to Storz gate valve on the 2 ½” hydrant outlet in the closed position. Ensure all kinks are out of the supply line and the supply line is hooked up to the Attack Engine’s intake. Charge the hydrant after Attack Engine calls for water. (2)

9. Connect 4 1/2” NST threads on Humat to an intake on the Supply Pumper using appropriate appliances and appropriate length of 4” hose. Note: This evolution requires the use of an open MIV and not the Auto Fill Valve. (2)

10. Connect one of the Officers side High Flow Discharges to the Humat’s 4” Storz intake via an appropriate length of 4” hose. (2)

11. Open butterfly valve on Humat to allow water into your intake hose. (2)

12. Open TPM to approximately 100 PSI. Turn Air Compressor **OFF**. (2)

13. Open appropriate intake bleeder valve. Close bleeder valve once air is evacuated and open appropriate MIV valve. Note your intake pressure. (2)

 Intake Pressure

14. Determine friction loss from hydrant to Attack Pumper based on 500 GPM sustained fire flow. (2)

 Friction Loss

15. Based upon intake pressure, friction loss and a relay pressure (20 PSI for LDH or 50 PSI for 3”):

 Determine if opening the High Flow Discharge is necessary to boost the Attack Engine’s supply pressure.

 Note: At no time should you attempt “gate back” hydrant pressure, always fully open the hydrant. (10)

16. **If necessary**, open discharge supplying Humat Valve and throttle up to the proper discharge pressure.

 Discharge Pressure:

17. Set TPM control device. (2)
18. Close Tank to Pump and ensure water tank is full. ________(2)

19. Ensure that there is a means for water to be constantly circulating through the pump for cooling in the event that all lines are shut down. ________(3)

20. Monitor pump panel, pump, engine compartment gauges, and radio. ________(2)

21. Confirm that Attack Engine has adequate pressure.
(Unless absolutely necessary, do not do this over the operations channel or T0) ________(2)

Phase 3 - Be Prepared to Expand Water Supply

22. Connect both 2 1/2” to Stortz gate valves to separate MIVs via appropriate lengths of 4” hose. ________(2)

23. Open appliance gate valves. ________(2)

24. Open appropriate bleeders to evacuate any air. Close bleeders. ________(2)

25. Open MIVs and adjust throttle if necessary. ________(2)

Phase 4 – Deploy Backup Line

26. Assistant will now deploy a 2” 300’ backup line from the Supply Engine. ________(2)

27. Candidate will adjust TPM in preparation for flowing backup line. ________(3)

28. Open the proper discharge valve on pump panel for back up line. ________(2)

29. Allow Foam Solution to fill attack line using default settings. ________(2)

30. Throttle up to proper discharge pressure for backup line. ________(5)

Backup Line Discharge Pressure

31. If boosting Attack Engine’s supply line gate back the Officers High Flow Discharge to maintain appropriate supply pressure. ________(5)

32. Set TPM control device.

33. Check back up line to ensure charging, freedom from obstructions, and remove all kinks missed by crew. ________(2)

34. Monitor pump panel, pump, engine compartment gauges and radio. ________(2)
Stage 5 – Prepare to Return To Service

35. Throttle down to idle. __________(2)

36. Turn Foam Pump off and flush fresh water through handline until clear water flows. __________(3)

37. Close discharges. __________(2)

38. Ensure water tank is topped off. __________(2)

39. Close intakes. Take pump out of gear. Reset TPM to “0.” __________(3)

40. Once told to do so by Attack Engine, close hydrant. __________(2)

41. Open appropriate bleeders and drains. __________(2)

42. Refill Class A Foam tank using EZ-Fill system. __________(2)

43. Clean strainer after every use. __________(2)

44. Ensure that Engine is ready for service. __________(2)

Total Possible Points 100 Candidate’s Score __________

Critical Fail Points

Failure to successfully perform any of the following components will result in an automatic failure of this evolution regardless of total score.

-Not delivering the requested product
-Improper setting of the TPM at any stage of the evolution
-Loss of water/pressure in either the supply line or back up line
-Improperly hooking up Humat Valve
-Using the Auto Fill Valve instead of an open MIV
-Not supplying the Humat Valve from a High Flow Discharge
-Activation of Attack Engine’s Intake Relief Valve (>150 PSI + FL)
-Not setting up for a “heavy water” hookup prior to charging Supply Line
-Failure to flow pre-connected line per FCGO 10-03 (plain water pressures)
-Failure to use wheel chock
-Activation of TRV

PASS FAIL

_________________________________ ________________
Test Evaluator Date