Unit 9 Objectives

1. Describe three methods for breaking the fire triangle.
2. Describe three methods of attack on a fire.
3. List three suppression techniques and describe their uses.
4. Describe the blackline concept.
5. Describe four kinds of fire control line.

6. Name four threats/hazards to an existing control line when fire is burning inside the line.
7. Describe the proper follow-up procedures for a dozer or tractor plow fireline.
8. Describe two kinds of coordinated crew techniques used for fireline construction and with at least four additional personnel, construct a fireline using these techniques.
9. Describe safety procedures to follow when in an area where retardant/water drops are being made.

10. Describe five safety procedures to follow when working around engines, tractor plows, and dozers.

11. Demonstrate the proper use of appropriate hand tools during fire suppression activities.

12. Demonstrate the construction of a cup trench on a steep slope.

TERMS

• **Control Line** – Constructed and natural fire barriers and treated fire edges used to control the fire

• **Fireline** – Any cleared strip or portion of a control line from which flammable material has been removed by scraping or digging down to mineral soil.

The Fire Triangle

```
<table>
<thead>
<tr>
<th>OXYGEN</th>
<th>FIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEAT</td>
</tr>
<tr>
<td>FUEL</td>
<td></td>
</tr>
</tbody>
</table>
```
The Fire Triangle

Fuel + Oxygen + Heat = FIRE

Remove one or more of these elements and the fire is extinguished:
- by cutting a line removing the fuel
- by spraying water or throwing dirt
- by hot spotting cooling with water or dirt

Fireline Construction Standards

- Influencing Factors
 - Fuel type
 - Fuel moisture
 - Continuity and arrangement of fuel
 - Temperatures
 - Wind

Methods of Attack

- Direct Attack — Construct fireline on the fire perimeter.
 - 1 Foot in the Black
- Indirect Attack — Construct fireline some distance away.
 - Burn Out fuels.
- Flanking/Parallel Attack — construct fireline along the flanks. How close depends on fire intensity.
 - Away from book
DIRECT ATTACK

Used When:

- 1 a. Fire is small
- b. in light fuels
- c. ground fires in peat or duff
- d. on the flanks and rear of larger fires
- e. when heat, flames and smoke will allow

Standards of Line Construction

- Line is constructed on fire edge.
- Width will vary:
 - wide enough to stop fire
 - topography including slope/aspect
 - fuels
 - weather conditions
 - part of fire being attacked
 - size and intensity

Standards of Line Construction cont..

- Resources available to fight fire
- local tactics may control the characteristics of “good” fireline
- Constructed to mineral soil.
- Throw all unburned materials outside the fireline.
Pro’s of Direct Attack

- Limits chance for fire to gain size or momentum
- Eliminates uncertain elements of backfiring
- Reduces danger of crown fires
- Firefighters can have “one foot in the black” for a safety zone

Con’s of Direct Attack

- Firefighters work in heat and smoke
- There may be a need for more patrols and mop-up
- Increase chance of spot fires
- Control lines can be long and irregular
- Limits ability to use barriers

Do’s of Direct Attack

- Take advantage of wind lulls
- Time attack to coincide with fire burning into lighter fuels
- Conserve water; cool edge so firefighters can get in close
- Scatter remaining heavy fuels inside the burn
- Fell snags adjacent to fireline
- HAVE A PLAN, WORK AS A TEAM!
Don’ts of Direct Attack

- Attack the head of a fast moving or erratic fires
- Waste water
- Place crew or equipment at risk

Indirect Attack
Fireline constructed at certain distances away from the fires edge.

INDIRECT ATTACK Used when:

- Burning conditions are intense
 - high heat intensity
 - high rates of spread
 - terrain or fire conditions are unsafe for firefighters
- Not enough firefighters
- Good barriers available
Used when:

- Extreme or erratic fire behavior, rapid R.O.S.
- Fireline needs to be straightened across pockets.

Standards of Line Construction

- To mineral soil.
- Width will vary:
 - a. wide enough to stop fire
 - b. topography including slope/aspect
 - c. fuels
 - d. weather conditions
 - e. part of fire being attacked
 - f. size and intensity

Standards of Line Construction cont..

- Resources available to fight fire
 - Local tactics may control the characteristics of “good” fireline

- “ALWAYS START AT AN ANCHOR POINT”
 - Some point where the fire cannot circle around you
 - Road, rocks, streams
Pro’s of Indirect

- Firefighters away from heat/smoke
- Take advantage of change in fuel types
- Permits taking advantage of topographic features & barriers

Con’s of Indirect

- Sacrifice acreage
- May be outflanked by fire
- Backfire may go out of control
- Fire may change direction suddenly
- You must commit to the incident until the fire is out

Do’s of Indirect

- Establish firelines in lighter fuel
- Make lines as straight as possible
- Keep heavy fuel concentrations outside of lines
- Use natural barriers
- Lines to mineral soil
Do’s of Indirect cont..

- Maintain patrols of established lines
- Set backfires only when needed
- Establish periodic rest periods for personnel

Don’ts of Indirect:

- Don’t over extend yourself
 - light only as much as you can hold
- Don’t set unwatched burnout!
- Don’t construct line next to tall fuels
- Don’t take any chances with personnel and equipment!!!!

FLANKING/PARALLEL ATTACK

- Construct fireline along the flanks. How close depends on fire intensity.
Black-Line

Natural Control Line
- Cold fire edge
- Fuel break
- Previously constructed barriers

Natural Barriers
Cold Fire Edge

Fuel Break

Previously Constructed barrier
Threats to Existing Control Line

- Spotting
- Rolling Debris
- Creeping
- Radiant Heat

Dozer or Tractor Plow Follow Up

- Clean up
- Break up machine piles and berms
- Fireproof needed areas
- Prepare and burn out control line
- Secure the control line
- Mop up the interior
- Patrol the control line

Coordinated Crew Techniques

- One-lick – Few Strokes – Move Forward (progressive)
- Bump-up/Specified Length
 - Each Member – Certain Length
 - Usually Used in Mop-Up
 - leap frog
ENGINE TACTICS
(Away from the book)

COVER:
• Water Use
• Direct Attack
• Indirect Attack
• Engine Protection

Using Water Wisely
• Aim stream at the base of the flame
• Conserve water- on/off technique
• Straight stream for distance
• Fog for cooling and penetration
• Utilize foam
Remember

- High heat use straight stream for knock down, fog for cooling
- Apply fog parallel to edge
- Be certain the fire is knocked down before moving on - watch for flare ups behind you

Remember......

- Again, straight stream for knock down
- Wet line may not hold, patrols and handline may be needed
- Accuracy counts. Use on/off to check effectiveness of water
- High pressure from hose may spread fire
- Use handtools w/backpack pumps

Indirect Attack with Engines

- Build wetline in light grass- lite fuels
- To reinforce existing firelines, dozerlines or roads
- To support backfire operations
Direct Attack is most effective in _______fuels?

Direct Attack is most effective in Light fuels?

Factors to consider

- Terrain
- Point of attack
- Escape routes & crew safety
- Fuel types
- Rate of spread & intensity
- Capability of personnel & equipment
Mobile Attack

Stationary Attack

Inside-Out Attack
Tandem Attack

- Two or more engines
- Mobile Attack

Hose lays would normally be used in ________
Hose lays would normally be used in Stationary

A primary concern to engine operators _______

A primary concern to engine operators Eng Prot
Engine Protection

- Always have a charged line available for engine PROTECTION.
- LCES

Fire _________ is the most critical factor in deciding Method of Attack
Fire BEHAVIOR is the most critical factor in deciding Method of Attack

Retardant/Water Drop Safety Procedures

- Back to Book P 9.6
- FLHB Page 73

Retardant/Water Drop Safety Procedures

- Up root vegetation
- Break large trees
- Move rocks
- Throw firefighters a considerable distance
Retardant/Water Drop Safety Procedures

Retardant/Water Drop Safety Procedures

Retardant/Water Drop Safety Procedures
Retardant/Water Drop Safety Procedures

Fireline Equipment Safety Procedures

- Engine - FLHB P60
- Tractor Plow and Dozer – FLHB P61

Unit 9 Objectives
1. Describe three methods for breaking the fire triangle.
2. Describe three methods of attack on a fire.
3. List three suppression techniques and describe their uses.
4. Describe the blackline concept.
5. Describe four kinds of fire control line.
Unit 9 Objectives

6. Name four threats/hazards to an existing control line when fire is burning inside the line.

7. Describe the proper follow-up procedures for a dozer or tractor plow fireline.

8. Describe two kinds of coordinated crew techniques used for fireline construction and with at least four additional personnel, construct a fireline using these techniques.

9. Describe safety procedures to follow when in an area where retardant/water drops are being made.

10. Describe five safety procedures to follow when working around engines, tractor plows, and dozers.

11. Demonstrate the proper use of appropriate hand tools during fire suppression activities.

12. Demonstrate the construction of a cup trench on a steep slope.