CHAPTER 39
EMS Response to Terrorism
Topics

- Defining Terrorism
- Terrorism and EMS
- Time/Distance/Shielding
- Responses to Terrorism
- Dissemination and Weaponization
- Characteristics of CBRNE Agents
- Strategy and Tactics
- Self-Protection at a Terrorist Incident
Defining Terrorism
The bombing of the Boston Marathon in 2013 was perpetrated by two young men who may have become radicalized partly via the Internet. © AP Images/Charles Krupa
Defining Terrorism

• "The unlawful use of force or violence against persons or property to intimidate or coerce a government, the civilian population or any segments thereof, in furtherance of political or social objectives"—The U.S. Department of Justice, Federal Bureau of Investigation
Domestic Terrorism

- Groups or individuals whose terrorist activities are directed at a government or population, without foreign direction
 - Environmental terrorists
 - Antigovernment militias
 - Racial-hate groups
 - Groups with extreme political, religious, or other philosophies or beliefs
International Terrorism

- Groups or individuals whose terrorist activities are foreign based and/or directed by countries or groups outside the targeted country or whose activities cross national borders.
- Growing trend toward loosely organized, international networks of terrorists
Types of Terrorism Incidents

• Incidents of terrorism may involve CBRNE agents.
 - Chemical
 - Biological
 - Radiological
 - Nuclear
 - Explosive

• Also called weapons of mass destruction (WMD)
Terrorism and EMS
The Twin Towers of the World Trade Center in New York City were destroyed and thousands were killed on September 11, 2001, when terrorists flew hijacked jetliners into the famous skyscrapers. © AP Images/Shawn Baldwin
Emergency Medical Responders as Targets

- Emergency Medical Responders are often principal targets of terrorist attacks.
- Safety of EMS provider is most important consideration when responding to potential terrorist incident.
Identify the Threat Posed by Event

• Incident that is a potential act of terrorism is also a crime scene.
• Recognizing OTTO signs may help protect against secondary attack.
 ▪ Occupancy or location
 ▪ Type of event
 ▪ Timing of event
 ▪ On-scene warning signs
Occupancy or Location

• Symbolic or historic targets
• Public buildings or assembly areas
• Controversial businesses
• Infrastructure systems
Type of Event

- Explosions and/or incendiaries
- Incidents involving firearms
- Nontrauma mass-casualty incidents
Timing of Event

• National holidays
• Anniversary dates of previous attacks
 - April 19
• Incidents occurring in major public areas at busy points of business day
On-Scene Warning Signs

- Unexplained patterns of illness or death
- Unexplained signs and symptoms or skin, eye, or airway irritation
- Containers that appear out of place
Recognize the Harms Posed by the Threat

- TRACEM-P harms
 - Thermal harm
 - Caused by either extreme heat or extreme cold
 - Radiological harm
 - From alpha particles, beta particles, or gamma rays, generally produced by nuclear events

continued on next slide
Recognize Harms Posed by Threat

- TRACEM-P harms
 - Asphyxiation
 - Caused by lack of oxygen in atmosphere
 - Chemical harm
 - Caused by toxic or corrosive materials
 - Etiological harm
 - Caused by disease

continued on next slide
Recognize Harms Posed by Threat

- TRACEM-P harms
 - Mechanical harm
 - Caused by physical trauma (gunshot, bomb fragments)
 - Psychological harm
 - Results from any violent event
Think About It

• How can I tell if I am responding to a terrorist incident?
Time/Distance/Shielding
Time/Distance/Shielding

• Time
 ▪ Minimize time in dangerous area or exposed to hazardous material, biological agent, or radiation.
 ▪ Execute rapid entries to perform reconnaissance or rescue.

continued on next slide
Time/Distance/Shielding

• Distance
 ▪ Maximize distance from hazard area or projected hazard area.
 ▪ Follow recommended guidelines regarding hazardous materials in *Emergency Response Guidebook*.
Time/Distance/Shielding

• Shielding
 ▪ Use appropriate shielding for specific hazards.
 ▪ Can be vehicles, buildings, fire-protection clothing, hazmat suits, positive-pressure self-contained breathing apparatus, PPE
 ▪ Vaccinations against specific diseases
Responses to Terrorism
Responses to a Chemical Incident

• Includes many classes of hazardous materials
 ▪ Can be inhaled, ingested, absorbed, injected
 ▪ Can include industrial chemical or warfare-type agents
Types of Harm from Chemical Incidents

- Thermal harm
 - Reactions create heat
- Asphyxiation harm
 - Reactions deplete oxygen
- Chemical harm
 - Systemic effects

continued on next slide
Types of Harm from Chemical Incidents

• Mechanical harm
 ▪ Corrosive chemicals weaken structures

• Psychological harm
 ▪ Secondary and either at the scene or some time after the event
Self-Protection Measures at a Chemical Incident

- Respiratory protection
- Protective clothing
- Be aware of possible contamination from patients.
Responses to a Biological Incident

• Presents as focused emergency or public health emergency
 - Focused emergency
 • Potential or actual point of origin located
 • Attempts made to prevent or minimize damage and spread
 - Public health emergency
 • Sudden demand upon public health infrastructure with no apparent explanation

continued on next slide
Responses to a Biological Incident

• Causative agents
 ▪ Bacteria
 ▪ Viruses
 ▪ Toxins
Critical Information about Biological Incidents

• What is an exposure?
 ▪ Dose or the concentration of the agent multiplied by time
 • Chemical doses
 • Concentration

continued on next slide
Critical Information about Biological Incidents

- Four major routes of entry
 - Absorption
 - Skin contact
 - Ingestion
 - By mouth
 - Injection
 - From needles or projectiles
 - Inhalation
 - By breathing

continued on next slide
Critical Information about Biological Incidents

• What is contamination?
 ▪ Substance clings to surface areas of body or clothing.
 ▪ Things that can be contaminated
 • Hard and soft surfaces
 • Skin and hair
 • Clothing

continued on next slide
Critical Information about Biological Incidents

• Exposure versus contamination
 ▪ Exposure occurs when a substance is taken into the body through one of the routes of exposure.
 ▪ Permeation
 • Spreading or movement of a substance through a surface or, on a molecular level, through intact materials.
 ▪ Remove clothing but preserve dignity.
Types of Harm from Biological Incidents

- Chemical harm
 - Scene of clandestine laboratory
- Etiological harm
 - Agents classified as poisons
- Mechanical harm
 - Explosives used to disperse agents
- Psychological harm
 - Even the thought can cause distress.
Self-Protection Measures at a Biological Incident

- PPE and respiratory protection
- Get as much information as possible.
- Prioritize protective measures.
 - Self-protection
 - Buddy system
 - Availability of Rapid Intervention Teams
 - Civilian protection
Responses to a Radiological/Nuclear Incident

- Small nuclear devices ("suitcase bombs") stockpiled in foreign nations
- Radiologic dispersion more practical and difficult to detect as radiation symptoms are delayed for hours or days
 - Sickness treatable if detected early
Types of Harm from Radiological/Nuclear Incidents

- Thermal harm
 - Nuclear explosion
- Radiological harm
 - Radiological materials
 - Ongoing hazard
- Chemical harm
 - Radiological substances also chemical hazards

continued on next slide
Types of Harm from Radiological/Nuclear Incidents

- Mechanical harm
 - Explosion
- Psychological harm
 - Immediate or delayed reaction
Self-Protection Measures at a Radiological/Nuclear Incident

- Time, distance, shielding
- Radiologic detecting equipment helps determine effectiveness of measures.
- Assume dissemination of radiological, biological, or chemical materials.
- Follow decontamination procedures.
Responses to an Explosive Incident

- Wide variety of devices from small pipe bombs to large vehicle bombs
- May involve attacks on a fixed target or group of people
- May be designed to disperse biological, chemical, or radiological materials
Types of Harm from Explosive Incidents

- **Thermal harm**
 - Heat of detonation

- **Asphyxiation harm**
 - Possibility of extremely dusty conditions

- **Chemical harm**
 - Result of explosive reaction from chemicals present at detonation site

continued on next slide
Types of Harm from Explosive Incidents

- Mechanical harm
 - Typically seen at bombing incidents
- Psychological harm
 - Stunned response can last seconds or minutes
 - Delayed response in the form of posttraumatic stress
Self-Protection Measures at an Explosive Incident

- Responder needs both preblast and postblast protection.
 - Preblast
 - Operations occurring after written or verbal warning received but before explosion takes place
 - Postblast
 - Operations occurring after at least one detonation
Dissemination and Weaponization
Respiratory Route

- Most effective, most common means
- Vast and delicate surface area
- Various levels, sizes of passageways into lungs
Other Routes

- Ingestion route
- Dermal route
- Human-to-human contact
Weaponization

- Most effective when targeted through inhalation route
- Particles in 3 to 5 microns in diameter
- Such airborne dissemination can be created by applying energy to material.
- Heat, explosives, and sprayers can aerosolize materials.
Characteristics of CBRNE Agents
Chemical Agents

• Chemical agent considerations
 ▪ Physical
 • Can be gaseous, liquid, or solid
 • Vapor pressures and densities can vary across the spectrum.
 ▪ Volatility
 • Low boiling point and high vapor pressure will evaporate more readily.
 • Allows agent to have greater airborne release potential

continued on next slide
Chemical Agents

• Chemical agent considerations
 ▪ Chemical
 • Sufficiently stable to survive dissemination and transport to site of action
 ▪ Toxological
 • Not all individuals of a species react in the same way.
 • Route of entry can also influence.
Some emergency and rescue services carry detectors to help identify the presence of various CBRNE agents. Examples include this chemical agent monitor.
Chemical Agents

• Classifications of chemical agents
 ▪ Choking agents
 • Predominately respiratory
 ▪ Vesicating (blister) agents
 • Cause chemical changes in cells of exposed tissue
 ▪ Cyanides
 • Prevent use of oxygen within cells

continued on next slide
Chemical Agents

• Classifications of chemical agents
 ▪ Nerve agents
 • Inhibit enzyme critical to proper nerve transmission, causing out of control parasympathetic nervous system
 • Signs and symptoms of exposure
 • Salivation
 • Lacrimation
 • Urination
 • Defecation

continued on next slide
Chemical Agents

- Classifications of chemical agents
 - Nerve agents
 - Signs and symptoms of exposure
 - GI Upset
 - Emesis
 - Miosis
 - Riot control agents
 - Irritating materials and lacrimators (tear-flow increasers)
Biological Agents

• Microorganisms or toxins that can cause disease processes
 ▪ Bacteria
 • Small, free-living microorganism
 ▪ Viruses
 • Organisms that requires a host cell inside which to live and reproduce

continued on next slide
Biological Agents

• Microorganisms or toxins that can cause disease processes
 - Toxins
 • Poisonous chemical compound that is produced by or derived from a living organism
Biological Agent Considerations

- Features of biological agents that influence their use as weapons
 - Infectivity
 - Virulence
 - Toxicity
 - Incubation period
 - Transmissibility
 - Lethality
 - Stability
Bacteria

• Like human body cells, they have an internal cytoplasm surrounded by a rigid cell wall; unlike human body cells, they lack an organized nucleus and other intracellular structures.

• Anthrax
• Plague
• Q fever
• Tularemia
Toxins

- Chemical compounds produced by living organisms
- Not volatile and do not replicate
- Botulinum
- Ricin
- Staphylococcal Enterotoxin B (SEB)
- Trichothecene Mycotoxins (T2)
Viruses

- Simplest microorganisms
- Obligatory intracellular parasites
 - Replicate only inside host cells
- Not easy to manufacture viruses in large quantities
- Smallpox
- Encephalitis
- The Viral Hemorrhagic Fevers (VHFs)
Radioactive/Nuclear Devices

• Potential scenarios
 ▪ Military nuclear devices
 ▪ Improvised nuclear devices
 ▪ Radiological dispersal device (RDD) or “dirty bomb"
 ▪ Sabotage

continued on next slide
Radioactive/Nuclear Devices

- Effects of radiation
 - Bone marrow
 - Gastrointestinal system
 - Central nervous system
Effects of Radiation

Some emergency and rescue services carry detectors to help identify the presence of various CBRNE agents. Examples include this radiation detector.
Incendiary Devices

- Use more plausible than the use of nuclear devices
- Not hard to obtain or initiate items
- Specialized teams generally available to deal with incendiary devices
Blast Injury Patterns

• Lung injury
 ▪ Bradycardia, apnea, and hypotension from blast wave

• Ear injury
 ▪ Rupture of tympanic membrane

continued on next slide
Blast Injury Patterns

- **Abdominal injury**
 - Rupture of gas-containing section of intestine
- **Brain injury**
 - Concussion or mild traumatic brain injury (MTBI) from blast wave
Treatment for Blast Injuries

• No different from the treatment for patients of any other thermal or blast injury
• Follow local protocol.
Strategy and Tactics
Strategy and Tactics

• The DOT *Emergency Response Guidebook* provides information for the common terrorist weapons.

• Strategies
 ▪ Broad general plans designed to achieve desired outcomes

• Tactics
 ▪ Specific operational actions responders take to accomplish assigned tasks
Isolation

• Initial considerations
 ▪ Controlling scene, isolating hazards, and attempting to conduct controlled evacuation is resource-intensive and requires law enforcement personnel.

• Establishing perimeter control
 ▪ Law enforcement must establish and control perimeter throughout incident.

continued on next slide
Isolation

• Perimeter control factors
 ▪ Amount and type of resources on hand
 ▪ Capability of available resources
 ▪ Ability of resources to self-protect
 ▪ Size, configuration of incident
Notification

- Generally required by established directives, procedures, and statutes
- Request for additional specialized agencies carried out by communications center based upon early reports of EMTs on scene
Identification

• Observe indicators of particular agent or presence of chemical containers or lab materials

• Consult current edition of *Emergency Response Guidebook*
Protection

- People, vehicles, equipment/supplies
- Make an initial scene size-up to determine security threats.
- Request protection (read security) via radio as soon as practical.
- Establish vehicle staging and triage/treatment areas in protected locations.

continued on next slide
Protection

- Advise EMS Command about protection/security concerns.
- Immediately report suspicious people or activities.
Decontamination

• Gross decontamination by EMS personnel
 ▪ Removing surface contamination via mechanical means and initial rinsing
 ▪ Amount of surface contamination significantly reduced
Self-Protection at a Terrorist Incident
Protect Yourself First

• Scene size-up and situational awareness
 ▪ Patients displaying signs of hazardous substance exposure?
 ▪ Unconscious patients?
 ▪ Patients exhibiting SLUDGEM signs?
 ▪ Blistering, reddening of skin, discoloration or skin irritation?
 ▪ Patients having difficulty breathing?

continued on next slide
Protect Yourself First

- Consider if there is evidence of the following:
 - Medical mass casualties or fatalities with minimal or no trauma
 - Responder casualties
 - Dead animals and vegetation
 - Unusual odors, color of smoke, vapor clouds
How to Protect Yourself

- Recognize a Possible Terrorist Event
 - Occupancy or location
 - Type of event
 - Timing
 - On-scene clues
How to Protect Yourself

• Don't rush in!
 ▪ Wait until appropriate authority says scene is safe.
 ▪ Follow Incident Command protocols.
 ▪ Wear appropriate PPE.
 ▪ Beware of possible secondary explosive devices or booby traps.
 ▪ Search all patients for explosives or weapons.

continued on next slide
How to Protect Yourself

• Understand the TRACEM-P harms
• Time, distance, shielding
• At a chemical incident
 ▪ Chemical harm primary
• At a biological incident
 ▪ Etiological harm primary

continued on next slide
How to Protect Yourself

• At a radiological/nuclear incident
 ▪ Radiological harm primary

• At an explosive incident
 ▪ Thermal and mechanical harms primary
Protect Yourself

A specialized truck contains equipment for handling explosives.
Chapter Review
There have been terrorist attacks throughout history. However, since the events of September 11, 2001, the modern world has been a different place because of the threat of terrorism.

continued on next slide
Chapter Review

• There are many different types of agents and weapons that can be used by terrorists. CBRNE is used to remember the different types. TRACEM-P is used to remember the types of hazards posed by these agents.
Chapter Review

- You must be sure to protect yourself from terrorist attacks as well as secondary attacks that are designed to injure or kill rescuers and further the physical and psychological impact of the attack.
Remember

- Responders often are targets of terrorists. Safety must be the highest priority. Use scene clues to identify potential terrorist incidents.
- Adapt protective measures to the specific threat. Know the protective principles of CBRNE events.

continued on next slide
Remember

- Important priorities for responders at a terrorist incident are life safety, incident stabilization, and protection of property.
- Isolation, perimeter control, and appropriate notifications are important priorities in managing a terrorist incident.

continued on next slide
Remember

- Force protection is an extension of general safety procedures. It refers to the safety and security of both providers and resources.
Questions to Consider

• How can I best protect myself from danger and hazards during a terrorist incident?
• What is my role in the incident response plan for a terrorist incident?
Critical Thinking

• You arrive at an office where multiple patients are complaining of the same symptoms. They state their office received several threats due to its role in a controversial foreign relations incident. You and your partner recognize the similar symptoms and decide these may be linked.
Critical Thinking

• What is your best course of action next? Should you remove yourself from the scene at this point or remain with your patients?